我正在尝试在Python中从头实现tf-idf矢量化程序。我计算了TDF值,但该值与使用sklearn的TfidfVectorizer()计算的TDF值不匹配。
我在做什么错了?
corpus = [
'this is the first document',
'this document is the second document',
'and this is the third one',
'is this the first document',
]
from collections import Counter
from tqdm import tqdm
from scipy.sparse import csr_matrix
import math
import operator
from sklearn.preprocessing import normalize
import numpy
sentence = []
for i in range(len(corpus)):
sentence.append(corpus[i].split())
word_freq = {} #calculate document frequency of a word
for i in range(len(sentence)):
tokens = sentence[i]
for w in tokens:
try:
word_freq[w].add(i) #add the word as key
except:
word_freq[w] = {i} #if it exists already, do not add.
for i in word_freq:
word_freq[i] = len(word_freq[i]) #Counting the number of times a word(key)is in the whole corpus thus giving us the frequency of that word.
def idf():
idfDict = {}
for word in word_freq:
idfDict[word] = math.log(len(sentence) / word_freq[word])
return idfDict
idfDict = idf()
预期输出: (使用vectorizer.idf_获得的输出)
[1.91629073 1.22314355 1.51082562 1. 1.91629073 1.91629073 1.22314355 1.91629073 1. ]
实际输出: (这些值是相应键的idf值。
{'and': 1.3862943611198906,
'document': 0.28768207245178085,
'first': 0.6931471805599453,
'is': 0.0,
'one': 1.3862943611198906,
'second': 1.3862943611198906,
'the': 0.0,
'third': 1.3862943611198906,
'this': 0.0
}
答案 0 :(得分:1)
有一些默认参数可能会影响sklearn的计算,但此处似乎很重要的特定参数是:
smooth_idf : boolean (default=True)
通过在文档频率上增加一个来平滑idf权重,就好像看到一个额外的文档中包含集合中每个术语的一次一样。防止零除。
如果您从每个元素中减去一个并提高e到该幂,则对于n的低值,您将获得非常接近5 / n的值:
1.91629073 => 5/2
1.22314355 => 5/4
1.51082562 => 5/3
1 => 5/5
无论如何,没有单一的tf-idf实现;您定义的指标只是一种试探法,试图观察某些属性(例如“较高的idf应与语料库中的稀有性相关”),因此我不必担心实现相同的实现。
sklearn似乎使用过:
log((document_length + 1) / (frequency of word + 1)) + 1
这就好比有一个文档在语料库中包含每个单词一样。
编辑:TfIdfNormalizer
的文档字符串证实了最后一段。