我正在尝试为sklearn中的嵌套CV的内部循环执行特征选择和网格搜索。虽然我可以将流水线作为估计量传递到RFECV
,但是当我将RFECV
作为估计量传递给GridSearchCV
时,会收到拟合错误。
我发现将管道中的模型名称更改为“估计”会使用“使无效参数回归”将错误移至管道,而不是在RFECV
中将模型命名为无效的参数。
我已经使用rfcv.get_params().keys()
和pipeline.get_params().keys()
验证了我所调用的参数确实存在。
如果我直接将SGDRegressor()
命名为“ estimator”并完全忽略管道,则不会收到此错误,但是此模型需要特征缩放和Y变量的对数转换。
from sklearn.compose import TransformedTargetRegressor
from sklearn.pipeline import Pipeline
from sklearn.model_selection import GridSearchCV
from sklearn.feature_selection import RFECV
from sklearn.preprocessing import MinMaxScaler
from sklearn.linear_model import SGDRegressor
import numpy as np
# random sample data
X = np.random.rand(100,2)
y = np.random.rand(100)
#passing coef amd importance through pipe and TransformedTargetRegressor
class MyPipeline(Pipeline):
@property
def coef_(self):
return self._final_estimator.coef_
@property
def feature_importances_(self):
return self._final_estimator.feature_importances_
class MyTransformedTargetRegressor(TransformedTargetRegressor):
@property
def feature_importances_(self):
return self.regressor_.feature_importances_
@property
def coef_(self):
return self.regressor_.coef_
# build pipeline
pipeline = MyPipeline([ ('scaler', MinMaxScaler()),
('estimator', MyTransformedTargetRegressor(regressor=SGDRegressor(), func=np.log1p, inverse_func=np.expm1))])
# define tuning grid
parameters = {"estimator__regressor__alpha": [1e-5,1e-4,1e-3,1e-2,1e-1],
"estimator__regressor__l1_ratio": [0.001,0.25,0.5,0.75,0.999]}
# instantiate inner cv
inner_kv = KFold(n_splits=5, shuffle=True, random_state=42)
rfcv = RFECV(estimator=pipeline, step=1, cv=inner_kv, scoring="neg_mean_squared_error")
cv = GridSearchCV(estimator=rfcv, param_grid=parameters, cv=inner_kv, iid=True,
scoring= "neg_mean_squared_error", n_jobs=-1, verbose=True)
cv.fit(X,y)
我收到以下错误,并可以确认回归变量是估计器管道的参数:
ValueError: Invalid parameter regressor for estimator MyPipeline(memory=None,
steps=[('scaler', MinMaxScaler(copy=True, feature_range=(0, 1))),
('estimator',
MyTransformedTargetRegressor(check_inverse=True,
func=<ufunc 'log1p'>,
inverse_func=<ufunc 'expm1'>,
regressor=SGDRegressor(alpha=0.0001,
average=False,
early_stopping=False,
epsilon=0.1,
eta0=0.01,
fit_intercept=True,
l1_ratio=0.15,
learning_rate='invscaling',
loss='squared_loss',
max_iter=1000,
n_iter_no_change=5,
penalty='l2',
power_t=0.25,
random_state=None,
shuffle=True,
tol=0.001,
validation_fraction=0.1,
verbose=0,
warm_start=False),
transformer=None))],
verbose=False). Check the list of available parameters with `estimator.get_params().keys()`.
谢谢
答案 0 :(得分:0)
它必须为estimator__estimator__regressor
,因为您在rfecv
内部有管道。
尝试一下!
parameters = {"estimator__estimator__regressor__alpha": [1e-5,1e-4,1e-3,1e-2,1e-1],
"estimator__estimator__regressor__l1_ratio": [0.001,0.25,0.5,0.75,0.999]}
注意:拥有嵌套的简历不是正确的方法。可能是您可以单独进行特征选择,然后进行模型训练。