sklearn.feature_selection和RFECV

时间:2017-03-10 21:47:30

标签: python scikit-learn sklearn-pandas

import pandas as pd
from sklearn.cross_validation import StratifiedKFold
from sklearn.feature_selection import SelectPercentile

a = pd.read_csv('NCAA_2003-2016_with_diff.csv')

logreg = lm.LogisticRegression()

rfecv = RFECV(estimator=logreg, cv=10, scoring='?')

有914行* 191列,例如:

x = df[['diff_dist','team1_log5','tpp','orp','tempo','efg','ftr','blk']]
y = df[['result']]

这意味着还有其他'x',我尝试选择最有效的变量来预测结果。

如何编写for循环来执行此操作?

0 个答案:

没有答案