我正在尝试使用以下教程作为指导,将自动编码器应用于Pytorch中的自定义数据集。
https://pytorch.org/tutorials/beginner/data_loading_tutorial.html
我的数据集由图像和与这些图像相关联的值组成。
尝试训练模型时遇到问题,因为我创建的数据集中的项目就像字典一样,并且模型需要张量。
dataloader type = <class 'torch.utils.data.dataloader.DataLoader'>
对于数据加载器中的项目:
<class 'dict'>
{'image': tensor([[[[0.5270, 0.5667, 0.6228, ..., 0.6588, 0.6748, 0.6787],
[0.5551, 0.5591, 0.6049, ..., 0.6441, 0.6659, 0.6718],
[0.4706, 0.4230, 0.5051, ..., 0.6439, 0.6608, 0.6627],
...,
[0.6914, 0.6478, 0.6574, ..., 0.5968, 0.5735, 0.5676],
[0.6814, 0.6475, 0.6713, ..., 0.5664, 0.5059, 0.4669],
[0.6588, 0.6623, 0.6914, ..., 0.4667, 0.3453, 0.3132]],
[[0.5061, 0.5270, 0.6422, ..., 0.6642, 0.6787, 0.6931],
[0.5375, 0.5426, 0.6169, ..., 0.6520, 0.6711, 0.6730],
[0.3980, 0.3314, 0.4326, ..., 0.6608, 0.6738, 0.6716],
...,
[0.7196, 0.6326, 0.6333, ..., 0.6000, 0.5814, 0.5801],
[0.6877, 0.6005, 0.6537, ..., 0.5368, 0.4382, 0.3944],
[0.6828, 0.6755, 0.6983, ..., 0.3880, 0.2973, 0.2806]],
[[0.5456, 0.5431, 0.5968, ..., 0.6657, 0.6650, 0.6735],
[0.4939, 0.3998, 0.4319, ..., 0.6650, 0.6765, 0.6676],
[0.4272, 0.2904, 0.3010, ..., 0.6618, 0.6745, 0.6583],
...,
[0.7324, 0.6740, 0.6505, ..., 0.5436, 0.4958, 0.4971],
[0.6939, 0.6836, 0.6887, ..., 0.4218, 0.3672, 0.3875],
[0.6669, 0.6686, 0.6826, ..., 0.3093, 0.3108, 0.3341]],
[[0.9961, 0.9961, 0.9961, ..., 0.9961, 0.9961, 0.9961],
[0.9961, 0.9961, 0.9961, ..., 0.9961, 0.9961, 0.9961],
[0.9961, 0.9961, 0.9961, ..., 0.9961, 0.9961, 0.9961],
...,
[0.9961, 0.9961, 0.9961, ..., 0.9961, 0.9961, 0.9961],
[0.9961, 0.9961, 0.9961, ..., 0.9961, 0.9961, 0.9961],
[0.9961, 0.9961, 0.9961, ..., 0.9961, 0.9961, 0.9961]]]],
dtype=torch.float64), 'hardness_arr': tensor([[[ 54.1600, 8.1600],
[ 7.4000, -38.6000]]], dtype=torch.float64)}
我可以从数据集字典转换为张量,还是有更好的方法来解决这个问题?
autoencoder = AutoEncoder()
optimizer = torch.optim.Adam(autoencoder.parameters(), lr=LR)
loss_func = nn.MSELoss()
for epoch in range(EPOCH):
for step, (dataloader['image'], dataloader['hardness_arr']) in enumerate(dataloader['image']):
b_x = x['image'].view(-1, crop_size*crop_size) # batch x, shape (batch, 28*28)
b_y = x['image'].view(-1, crop_size*crop_size) # batch y, shape (batch, 28*28)
encoded, decoded = autoencoder(b_x)
loss = loss_func(decoded, b_y) # mean square error
optimizer.zero_grad() # clear gradients for this training step
loss.backward() # backpropagation, compute gradients
optimizer.step() # apply gradients
TypeError Traceback (most recent call last)
<ipython-input-82-25093ba202c6> in <module>
5
6 for epoch in range(EPOCH):
----> 7 for step, (dataloader['image'], dataloader['hardness_arr']) in enumerate(dataloader['image']):
8 b_x = x['image'].view(-1, crop_size*crop_size) # batch x, shape (batch, 28*28)
9 b_y = x['image'].view(-1, crop_size*crop_size) # batch y, shape (batch, 28*28)
TypeError: 'DataLoader' object is not subscriptable
或者,如果我尝试枚举数据加载器本身,则会收到以下错误。
TypeError: 'DataLoader' object does not support item assignment