在训练和测试了神经网络之后,我试图显示一些示例来验证我的工作。我将方法命名为 predict ,将图像传递给该方法以预测其所属的类:
def predict(model, image_path, topk=5):
''' Predict the class (or classes) of an image using a trained deep learning model.
'''
output = process_image(image_path)
output.unsqueeze_(0)
output = output.cuda().float()
model.eval()
with torch.no_grad():
score = model(output)
prob, idxs = torch.topk(score, topk)
# Convert indices to classes
idxs = np.array(idxs)
idx_to_class = {val:key for key, val in model.class_to_idx.items()}
classes = [idx_to_class[idx] for idx in idxs[0]]
# Map the class name with collected topk classes
names = []
for cls in classes:
names.append(cat_to_name[str(cls)])
return prob, names
然后是最后一步,它基于神经网络的训练来显示最终结果,并像这样完成:
# TODO: Display an image along with the top 5 classes
x_pos, y_pos = predict(model, img_pil, topk=5)
ax_img = imshow(output)
ax_img.set_title(y_pos[0])
plt.figure(figsize=(4,4))
plt.barh(range(len(y_pos)), np.exp(x_pos[0]))
plt.yticks(range(len(y_pos)), y_pos)
plt.show()
错误是:
---------------------------------------------------------------------------
TypeError Traceback (most recent call last)
<ipython-input-45-e3f9951e9804> in <module>()
----> 1 x_pos, y_pos = predict(model, img_pil, topk=5)
2
3 ax_img = imshow(output)
4 ax_img.set_title(y_pos[0])
5
1 frames
<ipython-input-44-d77500f31561> in predict(model, image_path, topk)
14
15 # Convert indices to classes
---> 16 idxs = np.array(idxs)
17 idx_to_class = {val:key for key, val in model.class_to_idx.items()}
18 classes = [idx_to_class[idx] for idx in idxs[0]]
/usr/local/lib/python3.6/dist-packages/torch/tensor.py in __array__(self, dtype)
456 def __array__(self, dtype=None):
457 if dtype is None:
--> 458 return self.numpy()
459 else:
460 return self.numpy().astype(dtype, copy=False)
TypeError: can't convert CUDA tensor to numpy. Use Tensor.cpu() to copy the tensor to host memory first.
我该如何解决?
我尝试将idx更改为idxs = idxs.cpu().numpy()
,错误是:
TypeError Traceback (most recent call last)
<ipython-input-62-e3f9951e9804> in <module>()
5
6 plt.figure(figsize=(4,4))
----> 7 plt.barh(range(len(y_pos)), np.exp(x_pos[0]))
8 plt.yticks(range(len(y_pos)), y_pos)
9
/usr/local/lib/python3.6/dist-packages/torch/tensor.py in __array__(self, dtype)
456 def __array__(self, dtype=None):
457 if dtype is None:
--> 458 return self.numpy()
459 else:
460 return self.numpy().astype(dtype, copy=False)
TypeError: can't convert CUDA tensor to numpy. Use Tensor.cpu() to copy the tensor to host memory first.
答案 0 :(得分:2)
尝试更改
idxs = np.array(idxs)
到
idxs = idxs.cpu().numpy()
然后改变
plt.barh(range(len(y_pos)), np.exp(x_pos[0]))
到
plt.barh(range(len(y_pos)), np.exp(x_pos[0].cpu().numpy()))
答案 1 :(得分:0)
因此,如果您在 2021 年来到这里并且仍然遇到“TypeError:无法将 CUDA 张量转换为 numpy。首先使用 Tensor.cpu() 将张量复制到主机内存。强>"
从这个网站尝试 x.to("cpu").numpy()
https://jbencook.com/pytorch-numpy-conversion/
所以像 idxs = idxs.to("cpu").numpy().squeeze()
这样的东西会起作用。