给出数字和编码长度,如何将数字转换为张量的二进制表示形式?
例如,给定数字6
和宽度8
,我如何获得张量:
(0, 0, 0, 0, 0, 1, 1, 0)
答案 0 :(得分:3)
def binary(x, bits):
mask = 2**torch.arange(bits).to(x.device, x.dtype)
return x.unsqueeze(-1).bitwise_and(mask).ne(0).byte()
如果您想反转位的顺序,请改用torch.arange(bits-1,-1,-1)
。
答案 1 :(得分:1)
Tiana's answer是不错的选择。顺便说一句,要将Tiana的2基结果转换回10基数,可以这样做:
import torch
import numpy as np
def dec2bin(x, bits):
# mask = 2 ** torch.arange(bits).to(x.device, x.dtype)
mask = 2 ** torch.arange(bits - 1, -1, -1).to(x.device, x.dtype)
return x.unsqueeze(-1).bitwise_and(mask).ne(0).float()
def bin2dec(b, bits):
mask = 2 ** torch.arange(bits - 1, -1, -1).to(b.device, b.dtype)
return torch.sum(mask * b, -1)
if __name__ == '__main__':
NUM_BITS = 7
d = torch.randint(0, 16, (3, 6))
b = dec2bin(d, NUM_BITS)
# print(d)
# print(b)
# print(b.shape)
# print("num of total bits: {}".format(np.prod(b.shape)))
d_rec = bin2dec(b, NUM_BITS)
# print(d_rec)
print(abs(d - d_rec).max()) # should be 0.
答案 2 :(得分:0)
如果输入为无符号字节且输出宽度为8位:
>>> binary = np.unpackbits(np.array([0xaa, 0xf0], dtype=np.uint8))
>>> print(torch.tensor(binary))
tensor([1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 1, 1, 0, 0, 0, 0], dtype=torch.uint8)
请注意,unpackbits()
仅 与np.uint8
一起使用。
答案 3 :(得分:-1)
def decimal_to_binary_tensor(value, width=0):
string = format(value, '0{}b'.format(width))
binary = [0 if c == '0' else 1 for c in string]
return torch.tensor(binary, dtype=torch.uint8)
示例:
>>> print(decimal_to_binary_tensor(6, width=8))
tensor([0, 0, 0, 0, 0, 1, 1, 0], dtype=torch.uint8)
>>> print(decimal_to_binary_tensor(6))
tensor([1, 1, 0], dtype=torch.uint8)