我有一个通过以下CSV生成的Pandas.DataFrame
:
Category,Brand,Product Name,Price,Expiration Date, Package ID,Quantity
Cat1,Brand1,Product1,$1000,07/14/2020,XXXXXX,34
我正在尝试在CSV后面添加一列,每行中都有一个整数,对应于到期日期有多短(4
表示大于6个月,3
表示在3到6个月之间等)。
我的问题是,当尝试将Expiration Date
列转换为日期时间(使用pandas.to_datetime(df['Expiration Date'])
)并应用我的classify_expiration()
函数时,类型要么与函数指示的类型不匹配,要么它尝试将函数应用于index 0
,我认为这是标题(因此与%m/%d/%Y
格式不匹配)。我尝试过在分类函数内以及在.apply()
调用之前将其转换为datetime。我还尝试过使用timedelta
来比较到期日期和今天的当前日期,但是不适用于datetime.date.today()
。
这是我尝试的第一种方法:
def classify_expiration(row):
one_week = timedelta(weeks=1, days=0, hours=0, minutes=0, seconds=0)
if ((one_week * 0) <= (date.today() - row['Expiration Date']) <= (one_week * 4)):
return 4
这种方式给我带来了与类型错误有关的错误,这些类型在index 0
上不正确,或者无法将功能应用于系列。
这是我刚刚尝试过的给我AssertionError
的内容:
def days_between(date1, date2):
"""Calculates the number of days between two dates
Keyword arguments:
date1 -- The first date in the subtraction.
date2 -- The second date in the subtraction.
"""
date1 = datetime.strptime(date1, '%m/%d/%Y')
date2 = datetime.strptime(date2, '%m/%d/%Y')
return abs((date2 - date1).days)
def classify_expiration(row):
"""Calculate days/weeks to expiration. Assign quartile based on value.
Keyword arguments:
row -- row in a `pandas.core.frame.DataFrame` object. e.g. `df['A']`
"""
date_today = datetime.strptime(
date.today().strftime('%m/%d/%Y'), '%m/%d/%Y')
if (days_between(row, date_today) <= 30):
return 4
if (31 <= days_between(row, date_today) <= 90):
return 3
if (91 <= days_between(row, date_today) <= 120):
return 2
if (days_between(row, date_today) >= 121):
return 1
在这里我尝试应用该功能:
# Convert column to `datetime` if its current type is str
pd.to_datetime(product_sales['Expiration Date'])
# Applying the `classify_expiration()` function
product_sales['Expiration Quartile'] = product_sales.apply(
lambda row: classify_expiration(row), axis=1
)
我希望函数向DataFrame追加一个新列,该列包含针对每一行的到期日期生成的四分位数。我将收到AssertionError
,argument 1 must be str, not Series
等错误,以及与index 0
相关的其他错误。
答案 0 :(得分:1)
如果分配回days_between
,然后使用product_sales['Expiration Date'] = pd.to_datetime(product_sales['Expiration Date'])
进行标量循环,则需要在product_sales['Expiration Date'].apply(classify_expiration)
函数中删除转换为日期时间:
def days_between(date1, date2):
"""Calculates the number of days between two dates
Keyword arguments:
date1 -- The first date in the subtraction.
date2 -- The second date in the subtraction.
"""
return abs((date2 - date1).days)
product_sales['Expiration Date'] = pd.to_datetime(product_sales['Expiration Date'])
product_sales['Expiration Quartile'] = (product_sales['Expiration Date']
.apply(classify_expiration))
print (product_sales)
Category Brand Product Name Price Expiration Date Package ID Quantity \
0 Cat1 Brand1 Product1 $1000 2020-07-14 XXXXXX 34
Expiration Quartile
0 1
Pandas对binnig具有特殊功能,因此可以使用cut
:
product_sales['Expiration Date'] = pd.to_datetime(product_sales['Expiration Date'])
product_sales['Expiration Quartile'] = (product_sales['Expiration Date']
.apply(classify_expiration))
s = product_sales['Expiration Date'].sub(pd.to_datetime('today').floor('d')).dt.days
product_sales['Expiration Quartile1'] = pd.cut(s,
bins=[0, 30, 90,120, np.inf],
labels=[4,3,2,1])
print (product_sales)
Category Brand Product Name Price Expiration Date Package ID Quantity \
0 Cat1 Brand1 Product1 $1000 2020-07-14 XXXXXX 34
1 Cat1 Brand1 Product1 $1000 2020-01-13 XXXXXX 34
2 Cat1 Brand1 Product1 $1000 2019-11-01 XXXXXX 34
3 Cat1 Brand1 Product1 $1000 2020-01-15 XXXXXX 34
Expiration Quartile Expiration Quartile1
0 1 1
1 3 3
2 4 4
3 2 2