两个(大量)表当前具有“开始”和“结束”日期。我想合并两个表,以便可以从原始日期形成所有可能的“开始”和“结束”日期集。例如,如果int1 == 0:6,而int2 == 3:9,那么我想要三个间隔:0:2、3:6、7:9。
我尝试过翻转并手动创建所有可能的日期间隔,然后将数据合并到该表中。下面的代码显示了这些失败的玩具数据尝试。下面的预期输出应明确我要完成的工作。
现有的表格非常庞大(数以百万计的id,每个id都有多个日期集)。
我目前正在尝试第三种方法...创建一个空表,每个ID每行具有1天(即往返日期)。这种方法的问题在于,鉴于我需要涵盖的ID数和年份,它的速度非常慢。已经快20个小时了,我的基本表仍在创建中。在那之后,计划将是使用Foverlaps合并到现有表上。
由于这个问题,我不知所措,感谢您的协助。
# load packages
library(data.table)
library(lubridate)
# create data
dt1<- data.table(id = rep(1111, 4),
from_date = as.Date(c("2016-01-01", "2016-03-31","2016-09-02", "2016-09-03")),
to_date = as.Date(c("2016-03-15", "2016-09-01", "2016-09-02", "2016-12-15")),
progs = c("a1", "b1", "c1", "d1"))
setkey(dt1, id, from_date, to_date)
dt2<- data.table(id = rep(1111, 4),
from_date = as.Date(c("2016-02-01", "2016-04-01","2016-11-01", "2016-12-01")),
to_date = as.Date(c("2016-02-28", "2016-09-30", "2016-11-30", "2016-12-31")),
progs = c("a2", "b2", "c2", "d2"))
setkey(dt2, id, from_date, to_date)
# expected (hoped for) output
id from_date to_date progs1 prog2
1111 1/1/2016 1/31/2016 a1 NA
1111 2/1/2016 2/28/2016 a1 a2
1111 2/29/2016 3/15/2016 a1 NA
1111 3/31/2016 3/31/2016 b1 NA
1111 4/1/2016 9/1/2016 b1 b2
1111 9/2/2016 9/2/2016 c1 b2
1111 9/3/2016 9/30/2016 d1 b2
1111 10/1/2016 10/31/2016 NA d1
1111 11/1/2016 11/30/2016 d1 c2
1111 12/1/2016 12/15/2016 d1 NA
1111 12/16/2016 12/31/2016 NA d2
# failed attempt #1: using foverlaps
overlaps <- foverlaps(x=dt1, y=dt2,
by.x = c("id", "from_date", "to_date"),
by.y = c("id", "from_date", "to_date"),
type = "any",
mult ="all")
# this does not give every time interval
# failed attempt #2... super convoluted method
# try to make every possible time interval ----
dt <- rbind(dt1[, .(id, from_date)], dt2[, .(id, from_date)])
dt.temp <- rbind(dt1[, .(id, to_date)], dt2[, .(id, to_date)]) # get table with to_dates
setnames(dt.temp, "to_date", "from_date")
dt <- rbind(dt, dt.temp)
rm(dt.temp)
dt <- unique(dt)
setorder(dt, -from_date)
dt[, to_date := as.Date(c(NA, from_date[-.N]), origin = "1970-01-01"), by = "id"]
setorder(dt, from_date)
dt <- dt[!is.na(to_date)] # the last 'from_date' is actually the final to_date, so it doesn't begin a time interval
dt[, counter := 1:.N, by = id] # create indicator so we can know which interval is the first interval for each id
dt[counter != 1, from_date := as.integer(from_date + 1)] # to prevent overlap with previous interval
dt[, counter := NULL]
setkey(dt, id, from_date, to_date)
# merge on dt1 ----
dt <- foverlaps(dt, dt1, type = "any", mult = "all")
dt[, from_date := i.from_date] # when dt1 didn't match, the from_date is NA. fill with i.from_date
dt[, to_date := i.to_date] # when dt2 didn't match, the from_date is NA. fill with i.from_date
dt[, c("i.from_date", "i.to_date") := NULL] # no longer needed
setkey(dt, id, from_date, to_date)
# merge on dt2 ----
dt <- foverlaps(dt, dt2, type = "any", mult = "all")
dt[, from_date := i.from_date] # when dt2 didn't match, the from_date is NA. fill with i.from_date
dt[, to_date := i.to_date] # when dt2 didn't match, the from_date is NA. fill with i.from_date
dt[, c("i.from_date", "i.to_date") := NULL] # no longer needed
setkey(dt, id, from_date, to_date)
setnames(dt, c("i.progs", "progs"), c("progs1", "progs2"))
# Collapse data if dates are contiguous and data are the same ----
# Create unique ID for data chunks ----
dt[, group := .GRP, by = c("id", "progs1", "progs2")] # create group id
dt[, group := cumsum( c(0, diff(group)!=0) )] # in situation like a:a:a:b:b:b:b:a:a:a, want to distinguish first set of "a" from second set of "a"
# Create unique ID for contiguous times within a given data chunk ----
setkey(dt, id, from_date)
dt[, prev_to_date := c(NA, to_date[-.N]), by = "group"]
dt[, diff.prev := from_date - prev_to_date] # difference between from_date & prev_to_date will be 1 (day) if they are contiguous
dt[diff.prev != 1, diff.prev := NA] # set to NA if difference is not 1 day, i.e., it is not contiguous, i.e., it starts a new contiguous chunk
dt[is.na(diff.prev), contig.id := .I] # Give a unique number for each start of a new contiguous chunk (i.e., section starts with NA)
setkey(dt, group, from_date) # need to order the data so the following line will work.
dt[, contig.id := contig.id[1], by= .( group , cumsum(!is.na(contig.id))) ] # fill forward by group
dt[, c("prev_to_date", "diff.prev") := NULL] # drop columns that were just intermediates
# Collapse rows where data chunks are constant and time is contiguous ----
dt[, from_date := min(from_date), by = c("group", "contig.id")]
dt[, to_date := max(to_date), by = c("group", "contig.id")]
dt[, c("group", "contig.id") := NULL]
dt <- unique(dt)
# the end result is incorrect table
id from_date to_date progs2 progs1
1111 1/1/2016 2/28/2016 a2 a1
1111 2/29/2016 3/15/2016 NA a1
1111 3/16/2016 3/31/2016 NA b1
1111 4/1/2016 9/1/2016 b2 b1
1111 9/2/2016 9/2/2016 b2 c1
1111 9/3/2016 9/30/2016 b2 d1
1111 10/1/2016 11/30/2016 c2 d1
1111 12/1/2016 12/15/2016 d2 d1
1111 12/16/2016 12/31/2016 d2 NA
请参见上面的预期结果和实际结果...我无法在此处的表格中整齐地显示它们。
答案 0 :(得分:1)
不能100%地确定要执行的操作,但是有一个名为cross的函数可以让您跨多个向量进行所有排列。
> library(tidyr)
> a <- c("2016-01-01", "2016-03-31","2016-09-02", "2016-09-03")
> b <- c("2016-03-15", "2016-09-01", "2016-09-02", "2016-12-15")
> c <- rep(1111, 4)
> crossing(a, b,c)
# A tibble: 16 x 3
a b c
<chr> <chr> <dbl>
1 2016-01-01 2016-03-15 1111
2 2016-01-01 2016-09-01 1111
3 2016-01-01 2016-09-02 1111
4 2016-01-01 2016-12-15 1111
5 2016-03-31 2016-03-15 1111
6 2016-03-31 2016-09-01 1111
7 2016-03-31 2016-09-02 1111
8 2016-03-31 2016-12-15 1111
9 2016-09-02 2016-03-15 1111
10 2016-09-02 2016-09-01 1111
11 2016-09-02 2016-09-02 1111
12 2016-09-02 2016-12-15 1111
13 2016-09-03 2016-03-15 1111
14 2016-09-03 2016-09-01 1111
15 2016-09-03 2016-09-02 1111
16 2016-09-03 2016-12-15 1111
如果您要实现的目标,这是否会符合要求?
答案 1 :(得分:1)
尽管@GenericNameNumber回答了这个问题,但我发现了另一种解决我的问题的方法,该方法可能更容易理解(尽管与接受的答案相比,内存效率低下)。如果要尝试,只需几秒钟即可运行。
# load packages ----
library(data.table)
# create data ----
rm(list=ls())
dt1<- data.table(id = rep(1111, 4),
from_date = as.Date(c("2016-01-01", "2016-03-31","2016-09-02", "2016-09-03")),
to_date = as.Date(c("2016-03-15", "2016-09-01", "2016-09-02", "2016-12-15")),
progs = c("a1", "b1", "c1", "d1"))
setkey(dt1, id, from_date, to_date)
dt2<- data.table(id = rep(1111, 4),
from_date = as.Date(c("2016-02-01", "2016-04-01","2016-11-01", "2016-12-01")),
to_date = as.Date(c("2016-02-28", "2016-09-30", "2016-11-30", "2016-12-31")),
progs = c("a2", "b2", "c2", "d2"))
setkey(dt2, id, from_date, to_date)
# Create table with 'intervals' of 1 day duration ----
dt <- rbind(dt1[,1:3], dt2[,1:3])
dt[, reps := (to_date - from_date) + 1] # identify the number of days per interval (add one because dates are inclusive)
dt <- dt[rep(1:.N,reps)] # replicate each row to make 1 row per day of each interval
dt[,counter:=(1:.N-1),by=c("id", "from_date")] # add a counter (aka index number) for each from date per id
dt[, c("from_date", "to_date") := from_date + counter] # create intervals of 1 day
dt[, c("reps", "counter") := NULL] # drop columns no longer needed
dt <- unique(dt) # de-duplicate rows so each day only appears once
setkey(dt, id, from_date)
# merge on dt1 ----
dt <- foverlaps(x=dt, y=dt1,
by.x = c("id", "from_date", "to_date"),
by.y = c("id", "from_date", "to_date"),
type = "any", mult = "all")
dt <- dt[, c("from_date", "to_date") := NULL] # drop intervals from dt1 because will use the intervals from dt for merging on dt2 below
setnames(dt, c("i.from_date", "i.to_date"), c("from_date", "to_date") )
setcolorder(dt, c("id", "from_date", "to_date"))
setkey(dt, id, from_date, to_date)
# merge on dt2 ----
dt <- foverlaps(x=dt, y=dt2,
by.x = c("id", "from_date", "to_date"),
by.y = c("id", "from_date", "to_date"),
type = "any", mult = "all")
dt <- dt[, c("from_date", "to_date") := NULL] # drop intervals from dt2 because will use the intervals from dt for merging on dt2 below
setnames(dt, c("i.from_date", "i.to_date"), c("from_date", "to_date") )
setcolorder(dt, c("id", "from_date", "to_date"))
setkey(dt, id, from_date, to_date)
# Collapse data if dates are contiguous and data are the same ----
# Create unique ID for data chunks ----
setnames(dt, c("i.progs", "progs"), c("progs1", "progs2"))
dt[, group := .GRP, by = c("id", "progs1", "progs2")] # create group id
dt[, group := cumsum( c(0, diff(group)!=0) )] # in situation like a:a:a:b:b:b:b:a:a:a, want to distinguish first set of "a" from second set of "a"
# Create unique ID for contiguous times within a given data chunk ----
setkey(dt, id, from_date)
dt[, prev_to_date := c(NA, to_date[-.N]), by = "group"]
dt[, diff.prev := from_date - prev_to_date] # difference between from_date & prev_to_date will be 1 (day) if they are contiguous
dt[diff.prev != 1, diff.prev := NA] # set to NA if difference is not 1 day, i.e., it is not contiguous, i.e., it starts a new contiguous chunk
dt[is.na(diff.prev), contig.id := .I] # Give a unique number for each start of a new contiguous chunk (i.e., section starts with NA)
setkey(dt, group, from_date) # need to order the data so the following line will work.
dt[, contig.id := contig.id[1], by= .( group , cumsum(!is.na(contig.id))) ] # fill forward by group
dt[, c("prev_to_date", "diff.prev") := NULL] # drop columns that were just intermediates
# Collapse rows where data chunks are constant and time is contiguous ----
dt[, from_date := min(from_date), by = c("group", "contig.id")]
dt[, to_date := max(to_date), by = c("group", "contig.id")]
dt[, c("group", "contig.id") := NULL]
dt <- unique(dt)
答案 2 :(得分:0)
我想我理解您的意思,请尝试-从Base R:
library("data.table")
dt1<- data.table(id = rep(1111, 4),
from_date = as.Date(c("2016-01-01", "2016-03-31","2016-09-02", "2016-09-03")),
to_date = as.Date(c("2016-03-15", "2016-09-01", "2016-09-02", "2016-12-15")),
progs1 = c("a1", "b1", "c1", "d1"))
dt2 <- data.table(id = rep(1111, 4),
from_date = as.Date(c("2016-02-01", "2016-04-01","2016-11-01", "2016-12-01")),
to_date = as.Date(c("2016-02-28", "2016-09-30", "2016-11-30", "2016-12-31")),
progs2 = c("a2", "b2", "c2", "d2"))
# Full outer join:
dt3 <- merge(dt1, dt2, by = intersect(colnames(dt1), colnames(dt2)), all = TRUE)
答案 3 :(得分:0)
这不是很漂亮,但是这是一个有效的tidyverse / data.table混合解决方案。它将内容分解为几个部分:
您可能会找到使它更加优雅和有效的方法。
library(data.table)
library(tidyr)
#create test data ----
dt1<- data.table(id = rep(1111, 4),
from_date = as.Date(c("2016-01-01", "2016-03-31","2016-09-02", "2016-09-03")),
to_date = as.Date(c("2016-03-15", "2016-09-01", "2016-09-02", "2016-12-15")),
progs = c("a1", "b1", "c1", "d1"))
setkey(dt1, id, from_date, to_date)
dt2<- data.table(id = rep(1111, 4),
from_date = as.Date(c("2016-02-01", "2016-04-01","2016-11-01", "2016-12-01")),
to_date = as.Date(c("2016-02-28", "2016-09-30", "2016-11-30", "2016-12-31")),
progs = c("a2", "b2", "c2", "d2"))
setkey(dt2, id, from_date, to_date)
# create all possible matches between time segments ----
dt <- setDT(mutate(dt1) %>% full_join(., dt2, by = c("id")) )
#dt[, c("progs.y", "progs.x") := NULL]
#setnames(dt, names(dt), c("id", "startdate_dt1", "enddate_dt1", "startdate_dt2", "enddate_dt2"))
setnames(dt, names(dt), c("id", "startdate_dt1", "enddate_dt1", "progs1", "startdate_dt2", "enddate_dt2", "progs2"))
# set up intervals ----
temp <- dt %>%
mutate(overlap_type = case_when(
# First ID the non-matches
is.na(startdate_dt1) | is.na(startdate_dt2) ~ 0,
# Then figure out which overlapping date comes first
# Exactly the same dates
startdate_dt1 == startdate_dt2 & enddate_dt1 == enddate_dt2 ~ 1,
# dt1 before dt2 (or exactly the same dates)
startdate_dt1 <= startdate_dt2 & startdate_dt2 <= enddate_dt1 &
enddate_dt1 <= enddate_dt2 ~ 2,
# dt2 before dt1
startdate_dt2 <= startdate_dt1 & startdate_dt1 <= enddate_dt2 &
enddate_dt2 <= enddate_dt1 ~ 3,
# dt2 dates competely within dt1 dates or vice versa
startdate_dt2 >= startdate_dt1 & enddate_dt2 <= enddate_dt1 ~ 4,
startdate_dt1 >= startdate_dt2 & enddate_dt1 <= enddate_dt2 ~ 5,
# dt1 coverage only before dt2 (or dt2 only after dt1)
startdate_dt1 < startdate_dt2 & enddate_dt1 < startdate_dt2 ~ 6,
# dt1 coverage only after dt2 (or dt2 only before dt1)
startdate_dt1 > enddate_dt2 & enddate_dt1 > enddate_dt2 ~ 7,
# Any rows that are left
TRUE ~ 8),
# Calculate overlapping dates
startdate_o = as.Date(case_when(
overlap_type %in% c(1, 2, 4) ~ startdate_dt2,
overlap_type %in% c(3, 5) ~ startdate_dt1), origin = "1970-01-01"),
enddate_o = as.Date(ifelse(overlap_type %in% c(1:5),
pmin(enddate_dt2, enddate_dt1),
NA), origin = "1970-01-01"),
# Need to duplicate rows to separate out non-overlapping dt1 and dt2 periods
repnum = case_when(
overlap_type %in% c(2:5) ~ 3,
overlap_type %in% c(6:7) ~ 2,
TRUE ~ 1)
) %>%
select(id, startdate_dt1, enddate_dt1, startdate_dt2, enddate_dt2,
startdate_o, enddate_o, overlap_type, repnum) %>%
arrange(id, startdate_dt1, startdate_dt2, startdate_o,
enddate_dt1, enddate_dt2, enddate_o)
### Expand out rows to separate out overlaps ----
temp_ext <- temp[rep(seq(nrow(temp)), temp$repnum), 1:ncol(temp)]
## process expanded ----
temp_ext <- temp_ext %>%
group_by(id, startdate_dt1, enddate_dt1, startdate_dt2, enddate_dt2) %>%
mutate(rownum_temp = row_number()) %>%
ungroup() %>%
arrange(id, startdate_dt1, enddate_dt1, startdate_dt2, enddate_dt2, startdate_o,
enddate_o, overlap_type, rownum_temp) %>%
mutate(
# Remove non-overlapping dates
startdate_dt1 = as.Date(ifelse((overlap_type == 6 & rownum_temp == 2) |
(overlap_type == 7 & rownum_temp == 1),
NA, startdate_dt1), origin = "1970-01-01"),
enddate_dt1 = as.Date(ifelse((overlap_type == 6 & rownum_temp == 2) |
(overlap_type == 7 & rownum_temp == 1),
NA, enddate_dt1), origin = "1970-01-01"),
startdate_dt2 = as.Date(ifelse((overlap_type == 6 & rownum_temp == 1) |
(overlap_type == 7 & rownum_temp == 2),
NA, startdate_dt2), origin = "1970-01-01"),
enddate_dt2 = as.Date(ifelse((overlap_type == 6 & rownum_temp == 1) |
(overlap_type == 7 & rownum_temp == 2),
NA, enddate_dt2), origin = "1970-01-01")) %>%
distinct(id, startdate_dt1, enddate_dt1, startdate_dt2, enddate_dt2, startdate_o,
enddate_o, overlap_type, rownum_temp, .keep_all = TRUE) %>%
# Remove first row if start dates are the same or dt1 is only one day
filter(!(overlap_type %in% c(2:5) & rownum_temp == 1 &
(startdate_dt1 == startdate_dt2 | startdate_dt1 == enddate_dt1))) %>%
# Remove third row if enddates are the same
filter(!(overlap_type %in% c(2:5) & rownum_temp == 3 & enddate_dt1 == enddate_dt2))
## Calculate the finalized date columms----
### Calculate finalized date columns
temp_ext <- temp_ext %>%
# Set up combined dates
mutate(
# Start with rows with only dt1 or dt2, or when both sets of dates are identical
startdate_c = as.Date(
case_when(
(!is.na(startdate_dt1) & is.na(startdate_dt2)) | overlap_type == 1 ~ startdate_dt1,
!is.na(startdate_dt2) & is.na(startdate_dt1) ~ startdate_dt2), origin = "1970-01-01"),
enddate_c = as.Date(
case_when(
(!is.na(enddate_dt1) & is.na(enddate_dt2)) | overlap_type == 1 ~ enddate_dt1,
!is.na(enddate_dt2) & is.na(enddate_dt1) ~ enddate_dt2), origin = "1970-01-01"),
# Now look at overlapping rows and rows completely contained within the other data's dates
startdate_c = as.Date(
case_when(
overlap_type %in% c(2, 4) & rownum_temp == 1 ~ startdate_dt1,
overlap_type %in% c(3, 5) & rownum_temp == 1 ~ startdate_dt2,
overlap_type %in% c(2:5) & rownum_temp == 2 ~ startdate_o,
overlap_type %in% c(2:5) & rownum_temp == 3 ~ enddate_o + 1,
TRUE ~ startdate_c), origin = "1970-01-01"),
enddate_c = as.Date(
case_when(
overlap_type %in% c(2:5) & rownum_temp == 1 ~ lead(startdate_o, 1) - 1,
overlap_type %in% c(2:5) & rownum_temp == 2 ~ enddate_o,
overlap_type %in% c(2, 5) & rownum_temp == 3 ~ enddate_dt2,
overlap_type %in% c(3, 4) & rownum_temp == 3 ~ enddate_dt1,
TRUE ~ enddate_c), origin = "1970-01-01"),
# Deal with the last line for each person if it's part of an overlap
startdate_c = as.Date(ifelse((id != lead(id, 1) | is.na(lead(id, 1))) &
overlap_type %in% c(2:5) &
enddate_dt1 != enddate_dt2,
lag(enddate_o, 1) + 1,
startdate_c), origin = "1970-01-01"),
enddate_c = as.Date(ifelse((id != lead(id, 1) | is.na(lead(id, 1))) &
overlap_type %in% c(2:5),
pmax(enddate_dt1, enddate_dt2, na.rm = TRUE),
enddate_c), origin = "1970-01-01")
) %>%
arrange(id, startdate_c, enddate_c, startdate_dt1, startdate_dt2,
enddate_dt1, enddate_dt2, overlap_type) %>%
mutate(
# Identify which type of enrollment this row represents
enroll_type =
case_when(
(overlap_type == 2 & rownum_temp == 1) |
(overlap_type == 3 & rownum_temp == 3) |
(overlap_type == 6 & rownum_temp == 1) |
(overlap_type == 7 & rownum_temp == 2) |
(overlap_type == 4 & rownum_temp %in% c(1, 3)) |
(overlap_type == 0 & is.na(startdate_dt2)) ~ "dt1",
(overlap_type == 3 & rownum_temp == 1) |
(overlap_type == 2 & rownum_temp == 3) |
(overlap_type == 6 & rownum_temp == 2) |
(overlap_type == 7 & rownum_temp == 1) |
(overlap_type == 5 & rownum_temp %in% c(1, 3)) |
(overlap_type == 0 & is.na(startdate_dt1)) ~ "dt2",
overlap_type == 1 | (overlap_type %in% c(2:5) & rownum_temp == 2) ~ "both",
TRUE ~ "x"
),
# Drop rows from enroll_type == h/m when they are fully covered by an enroll_type == b
drop =
case_when(
id == lag(id, 1) & !is.na(lag(id, 1)) &
startdate_c == lag(startdate_c, 1) & !is.na(lag(startdate_c, 1)) &
enddate_c >= lag(enddate_c, 1) & !is.na(lag(enddate_c, 1)) &
# Fix up quirk from dt1 data where two rows present for the same day
!(lag(enroll_type, 1) != "dt2" & lag(enddate_dt1, 1) == lag(startdate_dt1, 1)) &
enroll_type != "both" ~ 1,
id == lead(id, 1) & !is.na(lead(id, 1)) &
startdate_c == lead(startdate_c, 1) & !is.na(lead(startdate_c, 1)) &
enddate_c <= lead(enddate_c, 1) & !is.na(lead(enddate_c, 1)) &
# Fix up quirk from dt1 data where two rows present for the same day
!(lead(enroll_type, 1) != "dt2" & lead(enddate_dt1, 1) == lead(startdate_dt1, 1)) &
enroll_type != "both" & lead(enroll_type, 1) == "both" ~ 1,
# Fix up other oddities when the date range is only one day
id == lag(id, 1) & !is.na(lag(id, 1)) &
startdate_c == lag(startdate_c, 1) & !is.na(lag(startdate_c, 1)) &
startdate_c == enddate_c & !is.na(startdate_c) &
((enroll_type == "dt2" & lag(enroll_type, 1) %in% c("both", "dt1")) |
(enroll_type == "dt1" & lag(enroll_type, 1) %in% c("both", "dt2"))) ~ 1,
id == lag(id, 1) & !is.na(lag(id, 1)) &
startdate_c == lag(startdate_c, 1) & !is.na(lag(startdate_c, 1)) &
startdate_c == enddate_c & !is.na(startdate_c) &
startdate_dt1 == lag(startdate_dt1, 1) & enddate_dt1 == lag(enddate_dt1, 1) &
!is.na(startdate_dt1) & !is.na(lag(startdate_dt1, 1)) &
enroll_type != "both" ~ 1,
id == lead(id, 1) & !is.na(lead(id, 1)) &
startdate_c == lead(startdate_c, 1) & !is.na(lead(startdate_c, 1)) &
startdate_c == enddate_c & !is.na(startdate_c) &
((enroll_type == "dt2" & lead(enroll_type, 1) %in% c("both", "dt1")) |
(enroll_type == "dt1" & lead(enroll_type, 1) %in% c("both", "dt2"))) ~ 1,
# Drop rows where the enddate_c < startdate_c due to
# both data sources' dates ending at the same time
enddate_c < startdate_c ~ 1,
TRUE ~ 0
)
) %>%
filter(drop == 0 | is.na(drop)) %>%
# Truncate remaining overlapping end dates
mutate(enddate_c = as.Date(
ifelse(id == lead(id, 1) & !is.na(lead(startdate_c, 1)) &
startdate_c < lead(startdate_c, 1) &
enddate_c >= lead(enddate_c, 1),
lead(startdate_c, 1) - 1,
enddate_c),
origin = "1970-01-01")
) %>%
select(-drop, -repnum, -rownum_temp) %>%
# With rows truncated, now additional rows with enroll_type == h/m that
# are fully covered by an enroll_type == b
# Also catches single day rows that now have enddate < startdate
mutate(
drop = case_when(
id == lag(id, 1) & startdate_c == lag(startdate_c, 1) &
enddate_c == lag(enddate_c, 1) & lag(enroll_type, 1) == "both" &
enroll_type != "both" ~ 1,
id == lead(id, 1) & startdate_c == lead(startdate_c, 1) &
enddate_c <= lead(enddate_c, 1) & lead(enroll_type, 1) == "both" ~ 1,
id == lag(id, 1) & startdate_c >= lag(startdate_c, 1) &
enddate_c <= lag(enddate_c, 1) & enroll_type != "both" &
lag(enroll_type, 1) == "both" ~ 1,
id == lead(id, 1) & startdate_c >= lead(startdate_c, 1) &
enddate_c <= lead(enddate_c, 1) & enroll_type != "both" &
lead(enroll_type, 1) == "both" ~ 1,
TRUE ~ 0)
) %>%
filter(drop == 0 | is.na(drop)) %>%
select(id, startdate_c, enddate_c, enroll_type)