如何使用keras-self-attention软件包可视化注意力LSTM?

时间:2019-10-12 17:47:56

标签: python tensorflow keras lstm attention-model

我正在使用(keras-self-attention)在KERAS中实施注意力LSTM。训练模型后如何可视化注意力部位?这是一个时间序列预测案例。

from keras.models import Sequential
from keras_self_attention import SeqWeightedAttention
from keras.layers import LSTM, Dense, Flatten

model = Sequential()
model.add(LSTM(activation = 'tanh' ,units = 200, return_sequences = True, 
               input_shape = (TrainD[0].shape[1], TrainD[0].shape[2])))
model.add(SeqSelfAttention())
model.add(Flatten())    
model.add(Dense(1, activation = 'relu'))

model.compile(optimizer = 'adam', loss = 'mse')

1 个答案:

答案 0 :(得分:4)

一种方法是获取给定输入的SeqSelfAttention的输出,并组织它们以便显示每通道的预测(请参见下文)。有关更高级的内容,请查看iNNvestigate library(包括使用示例)。


说明show_features_1D获取layer_name(可以是子字符串)层输出,并显示每个通道的预测(标记),沿x轴具有时间步长,沿y轴具有输出值。

  • input_data =形状为(1, input_shape)的数据的单批
  • prefetched_outputs =已经获取的图层输出;覆盖input_data
  • max_timesteps =最多可显示的时间步数
  • max_col_subplots =沿着水平方向的子图的最大数量
  • equate_axes =强制所有x和y轴相等(建议进行公平比较)
  • show_y_zero =是否将y = 0显示为红线
  • channel_axis =图层要素尺寸(例如LSTM的units,这是最后一个)
  • scale_width, scale_height =缩放显示的图像的宽度和高度
  • dpi =图像质量(每英寸点数)

视觉效果(如下)说明

  • 首先有用的是查看提取特征的形状,而不管其大小如何-提供有关例如频率内容
  • 第二个可用于查看功能关系-例如相对幅度,偏差和频率。下面的结果与上面的图像形成鲜明的对比,因为运行print(outs_1)显示所有幅值都非常小,并且变化不大,因此,包括y = 0点和等轴坐标会产生线状视觉效果,这可以解释为自我关注是偏向的。
  • 第三项对于可视化太多无法按上述方式可视化的特征很有用;用batch_shape而不是input_shape定义模型会删除打印形状中的所有?,我们可以看到第一个输出的形状为(10, 60, 240),第二个输出的形状为(10, 240, 240)。换句话说,第一个输出返回LSTM通道注意,第二个输出“时间步注意”。下面的热图结果可以解释为显示注意“冷却”w.r.t。时间步长。

SeqWeightedAttention 更容易可视化,但是可视化并不多。您需要摆脱上面的Flatten才能使其正常工作。注意的输出形状然后变为(10, 60)(10, 240)-您可以使用它们的简单直方图plt.hist(只需确保您排除批次尺寸-即喂(60,)(240,)


from keras.layers import Input, Dense, LSTM, Flatten, concatenate
from keras.models import Model
from keras.optimizers import Adam
from keras_self_attention = SeqSelfAttention
import numpy as np 

ipt   = Input(shape=(240,4))
x     = LSTM(60, activation='tanh', return_sequences=True)(ipt)
x     = SeqSelfAttention(return_attention=True)(x)
x     = concatenate(x)
x     = Flatten()(x)
out   = Dense(1, activation='sigmoid')(x)
model = Model(ipt,out)
model.compile(Adam(lr=1e-2), loss='binary_crossentropy')

X = np.random.rand(10,240,4) # dummy data
Y = np.random.randint(0,2,(10,1)) # dummy labels
model.train_on_batch(X, Y)

outs = get_layer_outputs(model, 'seq', X[0:1], 1)
outs_1 = outs[0]
outs_2 = outs[1]

show_features_1D(model,'lstm',X[0:1],max_timesteps=100,equate_axes=False,show_y_zero=False)
show_features_1D(model,'lstm',X[0:1],max_timesteps=100,equate_axes=True, show_y_zero=True)
show_features_2D(outs_2[0])  # [0] for 2D since 'outs_2' is 3D


def show_features_1D(model=None, layer_name=None, input_data=None,
                     prefetched_outputs=None, max_timesteps=100,
                     max_col_subplots=10, equate_axes=False,
                     show_y_zero=True, channel_axis=-1,
                     scale_width=1, scale_height=1, dpi=76):
    if prefetched_outputs is None:
        layer_outputs = get_layer_outputs(model, layer_name, input_data, 1)[0]
    else:
        layer_outputs = prefetched_outputs
    n_features    = layer_outputs.shape[channel_axis]

    for _int in range(1, max_col_subplots+1):
      if (n_features/_int).is_integer():
        n_cols = int(n_features/_int)
    n_rows = int(n_features/n_cols)

    fig, axes = plt.subplots(n_rows,n_cols,sharey=equate_axes,dpi=dpi)
    fig.set_size_inches(24*scale_width,16*scale_height)

    subplot_idx = 0
    for row_idx in range(axes.shape[0]):
      for col_idx in range(axes.shape[1]): 
        subplot_idx += 1
        feature_output = layer_outputs[:,subplot_idx-1]
        feature_output = feature_output[:max_timesteps]
        ax = axes[row_idx,col_idx]

        if show_y_zero:
            ax.axhline(0,color='red')
        ax.plot(feature_output)

        ax.axis(xmin=0,xmax=len(feature_output))
        ax.axis('off')

        ax.annotate(str(subplot_idx),xy=(0,.99),xycoords='axes fraction',
                    weight='bold',fontsize=14,color='g')
    if equate_axes:
        y_new = []
        for row_axis in axes:
            y_new += [np.max(np.abs([col_axis.get_ylim() for 
                                     col_axis in row_axis]))]
        y_new = np.max(y_new)
        for row_axis in axes:
            [col_axis.set_ylim(-y_new,y_new) for col_axis in row_axis]
    plt.show()
def show_features_2D(data, cmap='bwr', norm=None,
                     scale_width=1, scale_height=1):
    if norm is not None:
        vmin, vmax = norm
    else:
        vmin, vmax = None, None  # scale automatically per min-max of 'data'

    plt.imshow(data, cmap=cmap, vmin=vmin, vmax=vmax)
    plt.xlabel('Timesteps', weight='bold', fontsize=14)
    plt.ylabel('Attention features', weight='bold', fontsize=14)
    plt.colorbar(fraction=0.046, pad=0.04)  # works for any size plot

    plt.gcf().set_size_inches(8*scale_width, 8*scale_height)
    plt.show()

def get_layer_outputs(model, layer_name, input_data, learning_phase=1):
    outputs   = [layer.output for layer in model.layers if layer_name in layer.name]
    layers_fn = K.function([model.input, K.learning_phase()], outputs)
    return layers_fn([input_data, learning_phase])

每个请求

SeqWeightedAttention示例

ipt   = Input(batch_shape=(10,240,4))
x     = LSTM(60, activation='tanh', return_sequences=True)(ipt)
x     = SeqWeightedAttention(return_attention=True)(x)
x     = concatenate(x)
out   = Dense(1, activation='sigmoid')(x)
model = Model(ipt,out)
model.compile(Adam(lr=1e-2), loss='binary_crossentropy')

X = np.random.rand(10,240,4) # dummy data
Y = np.random.randint(0,2,(10,1)) # dummy labels
model.train_on_batch(X, Y)

outs = get_layer_outputs(model, 'seq', X, 1)
outs_1 = outs[0][0] # additional index since using batch_shape
outs_2 = outs[1][0]

plt.hist(outs_1, bins=500); plt.show()
plt.hist(outs_2, bins=500); plt.show()