Keras的自注意GAN

时间:2018-06-12 14:43:06

标签: tensorflow keras conv-neural-network attention-model generative-adversarial-network

我目前正在考虑在keras中实施自注意GAN。 我想要实现的方式如下:

def Attention(X, channels):
    def hw_flatten(x):
        return np.reshape(x, (x.shape[0], -1, x.shape[-1]))

    f = Conv2D(channels//8, kernel_size=1, strides=1, padding='same')(X)  # [bs, h, w, c']
    g = Conv2D(channels//8, kernel_size=1, strides=1, padding='same')(X)  # [bs, h, w, c']
    h = Conv2D(channels, kernel_size=1, strides=1, padding='same')(X)  # [bs, h, w, c]

    # N = h * w
    flatten_g = hw_flatten(g)
    flatten_f = hw_flatten(f)
    s = np.matmul(flatten_g, flatten_f.reshape((flatten_f.shape[0], flatten_f.shape[-1], -1)))  # [bs, N, N]

    beta = softmax(s, axis=-1)  # attention map

    flatten_h = hw_flatten(h)   # [bs, N, C]
    o = np.matmul(beta, flatten_h)  # [bs, N, C]
    gamma = 0

    o = np.reshape(o, X.shape)  # [bs, h, w, C]
    y = gamma * o + X

    return y

但我不知道如何添加可训练的标量伽玛,如论文所述:SAGAN

我也希望有人可以就如何初始化可训练的keras标量给出一些想法。

修改

我的实施现在是:

class Attention(Layer):
    def __init__(self, ch, **kwargs):
        super(Attention, self).__init__(**kwargs)
        self.channels = ch
        self.filters_f_g = self.channels // 8
        self.filters_h = self.channels

    def build(self, input_shape):
        kernel_shape_f_g = (1, 1) + (self.channels, self.filters_f_g)
        print(kernel_shape_f_g)
        kernel_shape_h = (1, 1) + (self.channels, self.filters_h)

        # Create a trainable weight variable for this layer:
        self.gamma = self.add_weight(name='gamma', shape=[1], initializer='zeros', trainable=True)
        self.kernel_f = self.add_weight(shape=kernel_shape_f_g,
                                        initializer='glorot_uniform',
                                        name='kernel_f')
        self.kernel_g = self.add_weight(shape=kernel_shape_f_g,
                                        initializer='glorot_uniform',
                                        name='kernel_g')
        self.kernel_h = self.add_weight(shape=kernel_shape_h,
                                        initializer='glorot_uniform',
                                        name='kernel_h')
        self.bias_f = self.add_weight(shape=(self.filters_f_g,),
                                      initializer='zeros',
                                      name='bias_F')
        self.bias_g = self.add_weight(shape=(self.filters_f_g,),
                                      initializer='zeros',
                                      name='bias_g')
        self.bias_h = self.add_weight(shape=(self.filters_h,),
                                      initializer='zeros',
                                      name='bias_h')
        super(Attention, self).build(input_shape)
        # Set input spec.
        self.input_spec = InputSpec(ndim=4,
                                    axes={3: input_shape[-1]})
        self.built = True


    def call(self, x):
        def hw_flatten(x):
            return K.reshape(x, shape=[K.shape(x)[0], K.shape(x)[1]*K.shape(x)[2], K.shape(x)[-1]])

        f = K.conv2d(x,
                     kernel=self.kernel_f,
                     strides=(1, 1), padding='same')  # [bs, h, w, c']
        f = K.bias_add(f, self.bias_f)
        g = K.conv2d(x,
                     kernel=self.kernel_g,
                     strides=(1, 1), padding='same')  # [bs, h, w, c']
        g = K.bias_add(g, self.bias_g)
        h = K.conv2d(x,
                     kernel=self.kernel_h,
                     strides=(1, 1), padding='same')  # [bs, h, w, c]
        h = K.bias_add(h, self.bias_h)

        s = tf.matmul(hw_flatten(g), hw_flatten(f), transpose_b=True)  # # [bs, N, N]

        beta = K.softmax(s, axis=-1)  # attention map

        o = K.batch_dot(beta, hw_flatten(h))  # [bs, N, C]

        o = K.reshape(o, shape=K.shape(x))  # [bs, h, w, C]
        x = self.gamma * o + x

        return x

    def compute_output_shape(self, input_shape):
        return input_shape

1 个答案:

答案 0 :(得分:2)

您对original code所做的修改存在一些问题:

  • 您无法在Keras / TF图表中使用numpy操作。首先是因为numpy将尝试直接操作,而输入张量实际上将仅在图形运行时评估/接收它们的值。第二,因为Keras / TF无法通过非Keras / TF操作进行反向传播。

    您应该通过tensorflowkeras操作替换原来的keras.backend操作(例如tf.matmul() keras.backend.batch_dot()tf.nn.doftmax() { {3}}等。)

  • 您正在混合Keras Layers(例如Conv2D)和Keras操作(例如np/keras.backend.reshape)。 Keras操作应该包含在keras.backend.softmax()层中,以便与其他人一起使用。

由于此自定义图层是可训练参数(gamma),因此需要Lambda,例如:

from keras import backend as K
from keras.engine.topology import Layer

class AttentionLayer(Layer):

    def __init__(self, output_dim, **kwargs):
        self.output_dim = output_dim
        super(AttentionLayer, self).__init__(**kwargs)

    def build(self, input_shape):
        # Create a trainable weight variable for this layer:
        self.gamma = self.add_weight(name='gamma', shape=[1], initializer='uniform', trainable=True)

        super(AttentionLayer, self).build(input_shape)

    def call(self, x):
        channels = K.int_shape(x)[-1]

        x = activation(x, channels) # use TF implementation, or reimplement with Keras operations
        return x

    def compute_output_shape(self, input_shape):
        return input_shape