我一直在使用BiLSTM对句子中的每个单词进行分类,我的输入是n_sentences,max_sequence_length,classs。最近,我一直在尝试使用以下关注层:https://www.kaggle.com/takuok/bidirectional-lstm-and-attention-lb-0-043
class Attention(Layer):
def __init__(self, step_dim,
W_regularizer=None, b_regularizer=None,
W_constraint=None, b_constraint=None,
bias=True, **kwargs):
self.supports_masking = True
self.init = initializers.get('glorot_uniform')
self.W_regularizer = regularizers.get(W_regularizer)
self.b_regularizer = regularizers.get(b_regularizer)
self.W_constraint = constraints.get(W_constraint)
self.b_constraint = constraints.get(b_constraint)
self.bias = bias
self.step_dim = step_dim
self.features_dim = 0
super(Attention, self).__init__(**kwargs)
def build(self, input_shape):
assert len(input_shape) == 3
self.W = self.add_weight((input_shape[-1],),
initializer=self.init,
name='{}_W'.format(self.name),
regularizer=self.W_regularizer,
constraint=self.W_constraint)
self.features_dim = input_shape[-1]
if self.bias:
self.b = self.add_weight((input_shape[1],),
initializer='zero',
name='{}_b'.format(self.name),
regularizer=self.b_regularizer,
constraint=self.b_constraint)
else:
self.b = None
self.built = True
def compute_mask(self, input, input_mask=None):
return None
def call(self, x, mask=None):
features_dim = self.features_dim
step_dim = self.step_dim
eij = K.reshape(K.dot(K.reshape(x, (-1, features_dim)),
K.reshape(self.W, (features_dim, 1))), (-1, step_dim))
if self.bias:
eij += self.b
eij = K.tanh(eij)
a = K.exp(eij)
if mask is not None:
a *= K.cast(mask, K.floatx())
a /= K.cast(K.sum(a, axis=1, keepdims=True) + K.epsilon(), K.floatx())
a = K.expand_dims(a)
weighted_input = x * a
return K.sum(weighted_input, axis=1)
def compute_output_shape(self, input_shape):
return input_shape[0], self.features_dim
我的输出必须是(示例,步骤,功能),否则我会得到
ValueError: Error when checking target: expected dense_2 to have 2 dimensions, but got array with shape (656, 109, 2)
所以我切换了:
return input_shape[0], self.features_dim
到
return input_shape[0], self.step_dim, self.features_dim
这样做是另一个错误:
InvalidArgumentError: Incompatible shapes: [32,109] vs. [32]
[[{{node metrics/acc/Equal}}]]
要在句子上实际使用注意力层,我需要修改什么?
答案 0 :(得分:0)
您使用SeqSelfAttention吗?
我遇到了同样的问题,我使用了SeqWeightedAttention而不是SeqSelfAttention-它解决了我的问题。
model.add(SeqWeightedAttention())