我有一个from azure.cosmosdb.table.tableservice import TableService
service = TableService(connection_string='xxxxx')
table_name = 'yyyy'
rows = service.query_entities(table_name, "PartitionKey lt '2014-07-01'")
for row in rows:
# do sth with row
的{{1}} scipy
。
如何从数据框中提取每行的最小值(不包括0.00)以及与该值相关的(行,列)标签?
例如:
第一行的distance_matrix
将是dataframe
第二行的min
将是[0.012885,'king','boy']
min
的代码:
[2.826742,'wise','bananas']
输出:
DataFrame
我尝试了以下操作(仍然需要附加关联的值):
import scipy
...
df = pd.DataFrame(scipy.spatial.distance_matrix(w2v_df[['x1', 'x2']],
w2v_df[['x1', 'x2']]),
index=w2v_df['word'],
columns=w2v_df['word'])
print(df)
print(df.size)
退出:
<class 'pandas.core.frame.DataFrame'>
word king wise queen ... kind man boy
word ...
king 0.000000 7.917140 10.963772 ... 5.811759 3.180582 0.012885
wise 7.917140 0.000000 6.642557 ... 10.990575 9.957878 7.908536
queen 10.963772 6.642557 0.000000 ... 10.347096 11.126121 10.951130
trees 9.954951 3.937842 2.917539 ... 10.940161 10.948519 9.943392
lab 7.437203 11.811392 10.148030 ... 1.716404 4.612150 7.429358
prince 3.180829 9.958469 11.126762 ... 2.897802 0.000654 3.177194
monkeys 10.007491 3.958035 2.926149 ... 10.995299 11.004550 9.995942
girl 5.820748 5.026462 5.153798 ... 6.336225 6.244742 5.808014
woman 10.663214 8.143587 2.350959 ... 8.843283 10.155728 10.650332
princess 5.204497 5.744348 5.894201 ... 5.439997 5.356606 5.191617
cat 3.033364 5.678351 10.397241 ... 8.359144 6.077646 3.031699
dinosaurs 5.745362 6.422390 5.683175 ... 5.075057 5.442950 5.732531
person 9.421978 10.901532 7.192433 ... 5.081030 7.477618 9.410744
bananas 5.238502 2.826742 8.147972 ... 9.239873 7.668165 5.231329
partner 7.752175 10.135952 7.572307 ... 3.468261 5.742199 7.741316
rat 8.830544 8.633246 4.739600 ... 6.113317 7.734904 8.818027
kind 5.811759 10.990575 10.347096 ... 0.000000 2.897668 5.804801
man 3.180582 9.957878 11.126121 ... 2.897668 0.000000 3.176944
boy 0.012885 7.908536 10.951130 ... 5.804801 3.176944 0.000000
[19 rows x 19 columns]
答案 0 :(得分:1)
请注意,距离矩阵是对称的。因此您可以在每个示例的每个示例中仅使用dataframe.sort_value(by='king')
。并使用.iloc[:,1]
。或者,您可以只使用min函数并将其存储在列表中。
我做到了这一点,对于看起来像您的小数据框来说效果很好。
df = df.replace(0,99999) /// # OR df.replace(0,999,inplace = True)
#get the min for per example the king
min_king = df.king.min()
[min_king,'king', df[df['king']==min_king].index.values[0]]
然后在该块上循环以获取所有索引