我能够计算少量输入的求逆。我应该进行哪些更改才能计算100000个输入的反转次数。
#include<iostream>
using namespace std;
int _mergeSort(int arr[], int temp[], int left, int right);
int merge(int arr[], int temp[], int left, int mid, int right);
int mergeSort(int arr[], int array_size)
{
int temp[array_size];
return _mergeSort(arr, temp, 0, array_size - 1);
}
int _mergeSort(int arr[], int temp[], int left, int right)
{
int mid, inv_count = 0;
if (right > left)
{
/*Divide the array into two parts
and call _mergeSortAndCountInv()
for each of the parts*/
mid = (left + right) / 2;
/*Inversion count will be sum of inversions in left-part
right-part as well as number of inversions while merging */
inv_count = _mergeSort(arr, temp, left, mid); // counting inversions in the left part
inv_count += _mergeSort(arr, temp, mid + 1, right); //counting inversions in the right part
inv_count += merge(arr, temp, left, mid + 1, right);
}
return inv_count;
}
int merge(int arr[], int temp[], int left, int mid, int right)
{
int i, j, k;
int inv_count = 0;
i = left; // i is the index for left subarray
j = mid; // j is the index for right subarray
k = right; // k is the index for resultant merged subarray
while (i <= (mid - 1) && j <= right)
{
if (arr[i] < arr[j])
temp[k++] = arr[i++];
else
{
temp[k++] = arr[j++];
inv_count = inv_count + (mid - i);
}
}
// copying the remaining parts of the left subarray to temp (if any)
while (i <= (mid - 1))
temp[k++] = arr[i++];
// copying the remaining parts of the left subarray to temp (if any)
while (j <= right)
temp[k++] = arr[j++];
// copying back the merged elements to oroginal array ;
for (i = left; i <= right; i++)
{
arr[i] = temp[i];
}
return inv_count;
}
int main()
{
int arr[] = { 5, 7, 2, 3, 9, 1 };
int n = sizeof(arr) / sizeof(arr[0]);
int ans = mergeSort(arr, n);
cout << "Number of inversions are" << "\n" << ans;
return 0;
}
答案 0 :(得分:0)
k =正确; // k是结果合并子数组的索引
我想这行应该有个问题
k = left;
所以问题出在排序算法上。
合并排序的时间复杂度为 Nlog(N),而您添加的只是一行代码
恒定复杂度的inv_count = inv_count + (mid - i);
因此,它不会改变算法的整体复杂度。即使输入 100000 ,对数组中的求反数进行计数也不会有任何问题。