我有一个有点奇怪的熊猫群。
我有一个源数据框,其中包含三列:客户,日期和项目。我想添加一个包含“项目历史记录”的新列,该列是该客户在更早(由日期定义)行中所有项目的数组。例如,给出此源数据框:
Customer Date Item
Bert 01/01/2019 Bread
Bert 15/01/2019 Cheese
Bert 20/01/2019 Apples
Bert 22/01/2019 Pears
Ernie 01/01/2019 Buzz Lightyear
Ernie 15/01/2019 Shellfish
Ernie 20/01/2019 A pet dog
Ernie 22/01/2019 Yoghurt
Steven 01/01/2019 A golden toilet
Steven 15/01/2019 Dominoes
我要创建此历史记录功能:
Customer Date Item Item History
Bert 01/01/2019 Bread NaN
Bert 15/01/2019 Cheese [Bread]
Bert 20/01/2019 Apples [Bread, Cheese]
Bert 22/01/2019 Pears [Bread, Cheese, Apples]
Ernie 01/01/2019 Buzz Lightyear NaN
Ernie 15/01/2019 Shellfish [Buzz Lightyear]
Ernie 20/01/2019 A pet dog [Buzz Lightyear, Shellfish]
Ernie 22/01/2019 Yoghurt [Buzz Lightyear, Shellfish, A pet dog]
Steven 01/01/2019 A golden toilet NaN
Steven 15/01/2019 Dominoes [A golden toilet]
我可以执行以下操作以按日期获取历史记录 :
df.groupby(['Customer', 'Date']).agg(lambda x: tuple(x)).applymap(list).reset_index()
因此,如果客户在一天之内购买了多个项目,那么它们都被列在一个数组中,而客户只购买了一个单独存在于其自己的数组中的项目,但是我不知道如何将它们连接起来与前面的行。
答案 0 :(得分:3)
对GroupBy.transform
使用自定义lambda函数,最后将空列表替换为NaN
:
f = lambda x: [x[:i].tolist() for i in range(len(x))]
df['Item History'] = df.groupby('Customer')['Item'].transform(f)
具有列表理解功能的另一种解决方案:
df['Item History'] = [x.Item[:i].tolist() for j, x in df.groupby('Customer')
for i in range(len(x))]
df.loc[~df['Item History'].astype(bool), 'Item History']= np.nan
print (df)
Customer Date Item \
0 Bert 01/01/2019 Bread
1 Bert 15/01/2019 Cheese
2 Bert 20/01/2019 Apples
3 Bert 22/01/2019 Pears
4 Ernie 01/01/2019 Buzz Lightyear
5 Ernie 15/01/2019 Shellfish
6 Ernie 20/01/2019 A pet dog
7 Ernie 22/01/2019 Yoghurt
8 Steven 01/01/2019 A golden toilet
9 Steven 15/01/2019 Dominoes
Item History
0 NaN
1 [Bread]
2 [Bread, Cheese]
3 [Bread, Cheese, Apples]
4 NaN
5 [Buzz Lightyear]
6 [Buzz Lightyear, Shellfish]
7 [Buzz Lightyear, Shellfish, A pet dog]
8 NaN
9 [A golden toilet]
答案 1 :(得分:0)
我花了很长时间使用@jezrael的答案,但是由于我拥有的数据集大小最终太慢了。为了改善这一点,我创建了一个执行相同功能的函数:
def buildItemHistoryPy(customers, items):
output = []
customer_ix = 0
for i in range(len(customers)):
if customers[i] == customers[i-1]:
output.append(items[customer_ix:i])
else:
customer_ix = i
output.append(items[customer_ix:i])
return output
df['Item History'] = buildItemHistoryPy(df.CustomerAccountNum.values, df.ItemId.values)
我的意图是将其用作Cython函数的基础(我希望它会更快),但是令我惊讶的是,裸露的python函数本身的速度明显要快得多。我继续前进,无论如何都用Cythonise:
%%cython
import numpy as np
cimport numpy as np
cpdef list buildItemHistoryCy(np.ndarray customers, np.ndarray items):
cdef list output = []
cdef int customer_ix = 0
for i in range(len(customers)):
if customers[i] == customers[i-1]:
output.append(items[customer_ix:i])
else:
customer_ix = i
output.append(items[customer_ix:i])
return output
从本质上讲,结果是两种功能都更快,但是Cython的最佳表现是适中的:
%timeit -n5 df['Item History1'] = [x.ItemID[:i].tolist() for j, x in df.groupby('CustomerAccountNum') for i in range(len(x))]
%timeit -n5 df['Item History2'] = buildItemHistoryPy(df.CustomerAccountNum.values, df.ItemID.values)
%timeit -n5 df['Item History3'] = buildItemHistoryCy(df.CustomerAccountNum.values, df.ItemID.values)
7.46 s ± 346 ms per loop (mean ± std. dev. of 7 runs, 5 loops each)
53.5 ms ± 2.16 ms per loop (mean ± std. dev. of 7 runs, 5 loops each)
23.6 ms ± 2.53 ms per loop (mean ± std. dev. of 7 runs, 5 loops each)
我的要求略有变化,因此不再需要清空空列表。如果是这样,则必须更改函数,以便您改为附加items[customer_ix:i].tolist()
。