连接pandas中两个数据帧的行

时间:2015-01-25 10:35:54

标签: python pandas dataframe

我需要一个接一个地连接具有相同行数(df_a)的两个数据帧df_bnRow,而不考虑任何键。此功能类似于cbind中的R programming language。每个数据帧中的列数可能不同。

结果数据帧将具有相同的行数nRow,列数等于两个数据帧中的列数之和。换句话说,这是两个数据帧的盲列式连接。

import pandas as pd
dict_data = {'Treatment': ['C', 'C', 'C'], 'Biorep': ['A', 'A', 'A'], 'Techrep': [1, 1, 1], 'AAseq': ['ELVISLIVES', 'ELVISLIVES', 'ELVISLIVES'], 'mz':[500.0, 500.5, 501.0]}
df_a = pd.DataFrame(dict_data)
dict_data = {'Treatment1': ['C', 'C', 'C'], 'Biorep1': ['A', 'A', 'A'], 'Techrep1': [1, 1, 1], 'AAseq1': ['ELVISLIVES', 'ELVISLIVES', 'ELVISLIVES'], 'inte1':[1100.0, 1050.0, 1010.0]}
df_b = pd.DataFrame(dict_data)

2 个答案:

答案 0 :(得分:72)

调用concat并传递param axis=1以逐列连接:

In [5]:

pd.concat([df_a,df_b], axis=1)
Out[5]:
        AAseq Biorep  Techrep Treatment     mz      AAseq1 Biorep1  Techrep1  \
0  ELVISLIVES      A        1         C  500.0  ELVISLIVES       A         1   
1  ELVISLIVES      A        1         C  500.5  ELVISLIVES       A         1   
2  ELVISLIVES      A        1         C  501.0  ELVISLIVES       A         1   

  Treatment1  inte1  
0          C   1100  
1          C   1050  
2          C   1010  

merging, joining and concatenating在线的各种方法有一个有用的指南。

例如,由于没有冲突列,您可以merge并使用索引,因为它们具有相同的行数:

In [6]:

df_a.merge(df_b, left_index=True, right_index=True)
Out[6]:
        AAseq Biorep  Techrep Treatment     mz      AAseq1 Biorep1  Techrep1  \
0  ELVISLIVES      A        1         C  500.0  ELVISLIVES       A         1   
1  ELVISLIVES      A        1         C  500.5  ELVISLIVES       A         1   
2  ELVISLIVES      A        1         C  501.0  ELVISLIVES       A         1   

  Treatment1  inte1  
0          C   1100  
1          C   1050  
2          C   1010  

出于与上述相同的原因,一个简单的join也起作用:

In [7]:

df_a.join(df_b)
Out[7]:
        AAseq Biorep  Techrep Treatment     mz      AAseq1 Biorep1  Techrep1  \
0  ELVISLIVES      A        1         C  500.0  ELVISLIVES       A         1   
1  ELVISLIVES      A        1         C  500.5  ELVISLIVES       A         1   
2  ELVISLIVES      A        1         C  501.0  ELVISLIVES       A         1   

  Treatment1  inte1  
0          C   1100  
1          C   1050  
2          C   1010  

答案 1 :(得分:2)

感谢@EdChum 我正在努力解决同样的问题,特别是当索引不匹配时。不幸的是,在熊猫指南中,这个案例被遗漏了(当你例如删除一些行时)

import pandas as pd
t=pd.DataFrame()
t['a']=[1,2,3,4]
t=t.loc[t['a']>1] #now index starts from 1

u=pd.DataFrame()
u['b']=[1,2,3] #index starts from 0

#option 1
#keep index of t
u.index = t.index 

#option 2
#index of t starts from 0
t.reset_index(drop=True, inplace=True)

#now concat will keep number of rows 
r=pd.concat([t,u], axis=1)