我正在学习如何设置RNN-LSTM网络进行预测。我用一个变量创建了数据集。
x y
1 2.5
2 6
3 8.6
4 11.2
5 13.8
6 16.4
...
与y(t) = 2.5x(t) + x(t-1) -0.9*x(t-2)
的关系。我正在尝试设置RNN-LSTM来学习模式,但是它发生了我的程序错误。我的程序如下:
df= pd.read_excel('dataset.xlsx')
def split_dataset(data):
# split into standard weeks
train, test = data[:-328], data[-328:-6]
# restructure into windows of weekly data
train = np.array(np.split(train, len(train)/1))
test = np.array(np.split(test, len(test)/1))
return train, test
verbose, epochs, batch_size = 0, 20, 16
train, test = split_dataset(df.values)
train_x, train_y = train[:,:,0], train[:,:,1]
model = Sequential()
model.add(LSTM(200, return_sequences=True, input_shape = train_x.shape))
model.compile(loss='mse', optimizer='adam')
发生了ValueError
:
ValueError: Error when checking input: expected lstm_35_input to have 3 dimensions, but got array with shape (8766, 1)
任何经验丰富的DS或pythoner都可以教我如何设置网络?
谢谢
答案 0 :(得分:0)
对于基于LSTM的RNN,输入应为3维(批,时间,data_point)。我假设您的x
变量的索引就是它的时间。在这种情况下,您必须将输入转换为某个窗口的批次,例如一个3的窗口,那么您的输入是:
批处理#输入目标
0 x x [0:3] y [3]
1 x x [1:4] y [4]
2 x [2:5] y [5]
注意:因为您使用的是最后3个时间步长来预测下一个第4个值,所以y从t = 3开始。如果您已经说过,您的y已经从最近三个时间步开始计算了,那么y应该从0索引开始,即在批次0中,您将y [0]作为目标
更新,如下所示
如果要具有多个序列,则可以将其建模为序列问题序列,并且将是N to M
映射,您需要五个x值来预测三个y:
批处理#输入目标
0 x x [0:5] y [3:6]
1 x x [1:6] y [4:7]
2 x [2:7] y [5:8]
答案 1 :(得分:0)
当前,我已经创建了数据窗口,看起来就像我提到的案例一样。
下面是我的代码:
df= pd.read_excel('dataset.xlsx')
# split a univariate dataset into train/test sets
def split_dataset(data):
train, test = data[:-328], data[-328:-6]
return train, test
train, test = split_dataset(df.values)
# scale train and test data to [-1, 1]
def scale(train, test):
# fit scaler
scaler = MinMaxScaler(feature_range=(0,1))
scaler = scaler.fit(train)
# transform train
#train = train.reshape(train.shape[0], train.shape[1])
train_scaled = scaler.transform(train)
# transform test
#test = test.reshape(test.shape[0], test.shape[1])
test_scaled = scaler.transform(test)
return scaler, train_scaled, test_scaled
scaler, train_scaled, test_scaled = scale(train, test)
def to_supervised(train, n_input, n_out=7):
# flatten data
data = train
X, y = list(), list()
in_start = 0
# step over the entire history one time step at a time
for _ in range(len(data)):
# define the end of the input sequence
in_end = in_start + n_input
out_end = in_end + n_out
# ensure we have enough data for this instance
if out_end <= len(data):
x_input = data[in_start:in_end, 0]
x_input = x_input.reshape((len(x_input), 1))
X.append(x_input)
y.append(data[in_end:out_end, 0])
# move along one time step
in_start += 1
return np.array(X), np.array(y)
train_x, train_y = to_supervised(train_scaled, n_input = 3, n_out = 1)
test_x, test_y = to_supervised(test_scaled, n_input = 3, n_out = 1)
verbose, epochs, batch_size = 0, 20, 16
n_timesteps, n_features, n_outputs = train_x.shape[1], train_x.shape[2], train_y.shape[1]
model = Sequential()
model.add(LSTM(200, return_sequences= False, input_shape = (train_x.shape[1],train_x.shape[2])))
model.add(Dense(1))
model.compile(loss = 'mse', optimizer = 'adam')
history = model.fit(train_x, train_y, epochs=epochs, verbose=verbose, validation_data = (test_x, test_y))
但是,我对此还有其他疑问:
Q1:LSTM中的单位是什么意思? [model.add(LSTM(units
,...))]
(我为模型尝试了不同的单位,随着单位的增加,它将更加准确。)
Q2:我应该设置几层?
Q3:如何预测多步?例如基于[x(t),x(t-1))预测y(t),y(t + 1)
我试图在n_out = 2
函数中设置to_supervised
,但是当我应用相同的方法时,它返回了错误
train_x, train_y = to_supervised(train_scaled, n_input = 3, n_out = 2)
test_x, test_y = to_supervised(test_scaled, n_input = 3, n_out = 2)
verbose, epochs, batch_size = 0, 20, 16
n_timesteps, n_features, n_outputs = train_x.shape[1], train_x.shape[2], train_y.shape[1]
model = Sequential()
model.add(LSTM(200, return_sequences= False, input_shape = (train_x.shape[1],train_x.shape[2])))
model.add(Dense(1))
model.compile(loss = 'mse', optimizer = 'adam')
history = model.fit(train_x, train_y, epochs=epochs, verbose=verbose, validation_data = (test_x, test_y))
ValueError: Error when checking target: expected dense_27 to have shape (1,) but got array with shape (2,)
第3季度(续):我应该在模型设置中添加或更改什么?
Q3(cont):return_sequences
是什么?我应该何时设置True
?