我正在学习如何设置RNN-LSTM网络进行预测。我用一个输入变量创建了数据集。
x y
1 2.5
2 6
3 8.6
4 11.2
5 13.8
6 16.4
...
通过以下python代码,我创建了窗口数据,例如[x(t-2),x(t-1),x(t)]来预测[y(t)]:
df= pd.read_excel('dataset.xlsx')
# split a univariate dataset into train/test sets
def split_dataset(data):
train, test = data[:-328], data[-328:-6]
return train, test
train, test = split_dataset(df.values)
# scale train and test data
def scale(train, test):
# fit scaler
scaler = MinMaxScaler(feature_range=(0,1))
scaler = scaler.fit(train)
# transform train
#train = train.reshape(train.shape[0], train.shape[1])
train_scaled = scaler.transform(train)
# transform test
#test = test.reshape(test.shape[0], test.shape[1])
test_scaled = scaler.transform(test)
return scaler, train_scaled, test_scaled
scaler, train_scaled, test_scaled = scale(train, test)
def to_supervised(train, n_input, n_out=7):
# flatten data
data = train
X, y = list(), list()
in_start = 0
# step over the entire history one time step at a time
for _ in range(len(data)):
# define the end of the input sequence
in_end = in_start + n_input
out_end = in_end + n_out
# ensure we have enough data for this instance
if out_end <= len(data):
x_input = data[in_start:in_end, 0]
x_input = x_input.reshape((len(x_input), 1))
X.append(x_input)
y.append(data[in_end:out_end, 0])
# move along one time step
in_start += 1
return np.array(X), np.array(y)
train_x, train_y = to_supervised(train_scaled, n_input = 3, n_out = 1)
test_x, test_y = to_supervised(test_scaled, n_input = 3, n_out = 1)
verbose, epochs, batch_size = 0, 20, 16
n_timesteps, n_features, n_outputs = train_x.shape[1], train_x.shape[2], train_y.shape[1]
model = Sequential()
model.add(LSTM(200, return_sequences= False, input_shape = (train_x.shape[1],train_x.shape[2])))
model.add(Dense(1))
model.compile(loss = 'mse', optimizer = 'adam')
history = model.fit(train_x, train_y, epochs=epochs, verbose=verbose, validation_data = (test_x, test_y))
但是,我对此还有其他疑问:
Q1:LSTM中的单位是什么意思? [model.add(LSTM(units,...))]
(我为模型尝试了不同的单位,随着单位的增加,它将更加准确。)
Q2:我应该设置几层?
Q3:如何预测多步?例如基于[x(t),x(t-1))来预测y(t),y(t + 1)我试图在to_supervised函数中设置n_out = 2,但是当我应用相同的方法时,它返回了错误
train_x, train_y = to_supervised(train_scaled, n_input = 3, n_out = 2)
test_x, test_y = to_supervised(test_scaled, n_input = 3, n_out = 2)
verbose, epochs, batch_size = 0, 20, 16
n_timesteps, n_features, n_outputs = train_x.shape[1], train_x.shape[2], train_y.shape[1]
model = Sequential()
model.add(LSTM(200, return_sequences= False, input_shape = (train_x.shape[1],train_x.shape[2])))
model.add(Dense(1))
model.compile(loss = 'mse', optimizer = 'adam')
history = model.fit(train_x, train_y, epochs=epochs, verbose=verbose, validation_data = (test_x, test_y))
ValueError: Error when checking target: expected dense_27 to have shape (1,) but got array with shape (2,)
第3季度(续):我应该在模型设置中添加或更改什么?
Q3(cont):return_sequences是什么?我什么时候应该设置为True?
答案 0 :(得分:0)
Q1。 LSTM中的单位是LSTM层中神经元的数量。
Q2。这取决于您的模型/数据。尝试改变它们以查看效果。
Q3。这取决于您采用哪种方法。
Q4。理想情况下,您每次都希望预测一个时间步长。 可以一次预测几个,但以我的经验,您会得到更好的结果,如我在下文所述
例如
使用y(t-1),y(t)预测y_hat(t + 1)
之后
使用y(t),y_hat(t + 1)预测y_hat(t + 2)
在这种情况下,您确定要使用X来预测Y吗? 训练x / y和测试x / y的样子如何?
答案 1 :(得分:0)