图像照明校正

时间:2019-09-05 11:31:08

标签: c# image image-processing emgucv aforge

我有一个用相机拍摄的图像。有时,图像中的光线不均匀。有一些深色阴影。这会导致EMGU和Aforge处理OCR图像的最佳阈值设置错误。

这是图像: enter image description here

这是我达到阈值后得到的:

enter image description here

如何校正照明?我尝试了自适应阈值,结果大致相同。也使用以下代码尝试了伽玛校正:

 ImageAttributes attributes = new ImageAttributes();
            attributes.SetGamma(10);

            // Draw the image onto the new bitmap
            // while applying the new gamma value.
            System.Drawing.Point[] points =
   {
    new System.Drawing.Point(0, 0),
    new System.Drawing.Point(image.Width, 0),
    new System.Drawing.Point(0, image.Height),
   };
            Rectangle rect =
                new Rectangle(0, 0, image.Width, image.Height);

            // Make the result bitmap.
            Bitmap bm = new Bitmap(image.Width, image.Height);
            using (Graphics gr = Graphics.FromImage(bm))
            {
                gr.DrawImage(HSICONV.Bitmap, points, rect,
                    GraphicsUnit.Pixel, attributes);
            }

相同的结果。请帮忙。

更新: 根据Nathancy的建议,我将他的代码转换为c#,以进行不均匀的光照校正,并且有效:

   Image<Gray, byte> smoothedGrayFrame = grayImage.PyrDown();
                smoothedGrayFrame = smoothedGrayFrame.PyrUp();
                //canny
                Image<Gray, byte> cannyFrame = null;

                cannyFrame = smoothedGrayFrame.Canny(50, 50);
                //smoothing

                grayImage = smoothedGrayFrame;
                //binarize
                Image<Gray, byte> grayout = grayImage.Clone();
                CvInvoke.AdaptiveThreshold(grayImage, grayout, 255, AdaptiveThresholdType.GaussianC, ThresholdType.BinaryInv, Convert.ToInt32(numericmainthreshold.Value) + Convert.ToInt32(numericmainthreshold.Value) % 2 + 1, 1.2d);
                grayout._Not();
                Mat kernelCl = CvInvoke.GetStructuringElement(ElementShape.Rectangle, new Size(3, 3), new System.Drawing.Point(-1, -1));
                CvInvoke.MorphologyEx(grayout, grayout, MorphOp.Close, kernelCl, new System.Drawing.Point(-1, -1), 1, BorderType.Default, new MCvScalar());

1 个答案:

答案 0 :(得分:5)

这是一种方法:

  • 将图像转换为灰度图像,将高斯模糊转换为平滑图像
  • 获取二进制图像的自适应阈值
  • 执行形态转换以使图像平滑
  • 膨胀以增强文字
  • 反转图像

转换为灰度和模糊后,我们自适应阈值

有小孔和瑕疵,所以我们执行变形以平滑图像

从这里开始,我们可以选择扩展以增强文字

现在我们将图像反转以得到结果

我在OpenCV和Python中实现了此方法,但是您可以将相同的策略应用于C#

import cv2

image = cv2.imread('1.png')
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
blur = cv2.GaussianBlur(gray, (5,5), 0)
thresh = cv2.adaptiveThreshold(blur,255,cv2.ADAPTIVE_THRESH_GAUSSIAN_C, \
         cv2.THRESH_BINARY_INV,9,11)
kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (3,3))
close = cv2.morphologyEx(thresh, cv2.MORPH_CLOSE, kernel)
dilate = cv2.dilate(close, kernel, iterations=1)
result = 255 - dilate 

cv2.imshow('thresh', thresh)
cv2.imshow('close', close)
cv2.imshow('dilate', dilate)
cv2.imshow('result', result)
cv2.waitKey()