我正在尝试从Investopedia计算EMA的特定公式,
EmaToday = (ValueToday ∗ (Smoothing / 1+Days))
+ (EmaYesterday * (1 - (Smoothing / 1+Days)))
我们可以简化为:
Smoothing and Days are constants.
Let's call (Smoothing / 1 + Days) as 'M'
The simplified equation becomes:
EmaToday = ((ValueToday - EmaYesterday) * M) + EmaYesterday
我们可以在传统的python中使用如下循环来做到这一点:
# Initialize an empty numpy array to hold calculated ema values
emaTodayArray = np.zeros((1, valueTodayArray.size - Days), dtype=np.float32)
ema = emaYesterday
# Calculate ema
for i, valueToday in enumerate(np.nditer(valueList)):
ema = ((valueToday - ema) * M) + ema
emaTodayArray[i] = ema
emaTodayArray
保存所有计算出的EMA值。
由于要进行每次新计算都需要emaYesterday
值,因此我很难理解如何将其完全矢量化。
如果首先可以使用numpy进行完全矢量化,那么如果有人可以向我展示方法,我将非常感激。
答案 0 :(得分:2)
注意:我必须填写一些虚拟变量以使您的代码运行,请检查它们是否还可以。
可以通过转换ema[i] ~> ema'[i] = ema[i] x (1-M)^-i
将循环向量化,然后将其变成cumsum
。
下面在ema_pp_naive
中实现。
此方法的问题在于,对于中等大小的i
(〜10 ^ 3),(1-M)^-i项可能会溢出,从而导致结果无用。
我们可以通过进入日志空间(使用np.logaddexp
进行求和)来避免此问题。这个ema_pp_safe
比朴素的方法贵很多,但仍然比原始循环快10倍以上。在我的快速而肮脏的测试中,这给出了一百万个及以上字词的正确结果。
代码:
import numpy as np
K = 1000
Days = 0
emaYesterday = np.random.random()
valueTodayArray = np.random.random(K)
M = np.random.random()
valueList = valueTodayArray
import time
T = []
T.append(time.perf_counter())
# Initialize an empty numpy array to hold calculated ema values
emaTodayArray = np.zeros((valueTodayArray.size - Days), dtype=np.float32)
ema = emaYesterday
# Calculate ema
for i, valueToday in enumerate(np.nditer(valueList)):
ema = ((valueToday - ema) * M) + ema
emaTodayArray[i] = ema
T.append(time.perf_counter())
scaling = np.broadcast_to(1/(1-M), valueTodayArray.size+1).cumprod()
ema_pp_naive = ((np.concatenate([[emaYesterday], valueTodayArray * M]) * scaling).cumsum() / scaling)[1:]
T.append(time.perf_counter())
logscaling = np.log(1-M)*np.arange(valueTodayArray.size+1)
log_ema_pp = np.logaddexp.accumulate(np.log(np.concatenate([[emaYesterday], valueTodayArray * M])) - logscaling) + logscaling
ema_pp_safe = np.exp(log_ema_pp[1:])
T.append(time.perf_counter())
print(f'K = {K}')
print('naive method correct:', np.allclose(ema_pp_naive, emaTodayArray))
print('safe method correct:', np.allclose(ema_pp_safe, emaTodayArray))
print('OP {:.3f} ms naive {:.3f} ms safe {:.3f} ms'.format(*np.diff(T)*1000))
示例运行:
K = 100
naive method correct: True
safe method correct: True
OP 0.236 ms naive 0.061 ms safe 0.053 ms
K = 1000
naive method correct: False
safe method correct: True
OP 2.397 ms naive 0.224 ms safe 0.183 ms
K = 1000000
naive method correct: False
safe method correct: True
OP 2145.956 ms naive 18.342 ms safe 108.528 ms