具有相互依存值的矩阵中的向量化计算

时间:2018-07-05 14:59:25

标签: python numpy vectorization market-basket-analysis

我正在多个时间分辨率下跟踪多个离散时间序列,得到一个SxRxB矩阵,其中S是时间序列数,R是不同分辨率数,B是缓冲区,即每个序列有多少个值记得。每个系列都是离散的,并使用有限范围的自然数表示其值。我在这里将这些称为“符号”。

对于每个系列,我想计算在所有测量中,先前测量的任何符号直接在当前测量的任何符号之前的频率。我已经通过如下所示的for循环解决了这个问题,但是出于明显的原因,我想对其进行向量化。

我不确定我的数据结构方式是否有效,因此我愿意在那里提出建议。我认为尤其是比率矩阵可以做的不同。

谢谢!

def supports_loop(data, num_series, resolutions, buffer_size, vocab_size):
    # For small test matrices we can calculate the complete matrix without problems
    indices = []
    indices.append(xrange(num_series))
    indices.append(xrange(vocab_size))
    indices.append(xrange(num_series))
    indices.append(xrange(vocab_size))
    indices.append(xrange(resolutions))

    # This is huge! :/
    # dimensions:
    #   series and value for which we calculate,
    #   series and value which precedes that measurement,
    #   resolution
    ratios = np.full((num_series, vocab_size, num_series, vocab_size, resolutions), 0.0)

    for idx in itertools.product(*indices):
        s0, v0 = idx[0],idx[1]  # the series and symbol for which we calculate
        s1, v1 = idx[2],idx[3]  # the series and symbol which should precede the we're calculating for
        res = idx[4]

        # Find the positions where s0==v0
        found0 = np.where(data[s0, res, :] == v0)[0]
        if found0.size == 0:
            continue
        #print('found {}={} at {}'.format(s0, v0, found0))

        # Check how often s1==v1 right before s0==v0
        candidates = (s1, res, (found0 - 1 + buffer_size) % buffer_size)
        found01 = np.count_nonzero(data[candidates] == v1)
        if found01 == 0:
            continue

        print('found {}={} following {}={} at {}'.format(s0, v0, s1, v1, found01))
        # total01 = number of positions where either s0 or s1 is defined (i.e. >=0)
        total01 = len(np.argwhere((data[s0, res, :] >= 0) & (data[s1, res, :] >= 0)))
        ratio = (float(found01) / total01) if total01 > 0 else 0.0
        ratios[idx] = ratio

    return ratios


def stackoverflow_example(fnc):
    data = np.array([
        [[0, 0, 1],  # series 0, resolution 0
         [1, 3, 2]], # series 0, resolution 1

        [[2, 1, 2],  # series 1, resolution 0
         [3, 3, 3]], # series 1, resoltuion 1
    ])

    num_series = data.shape[0]
    resolutions = data.shape[1]
    buffer_size = data.shape[2]
    vocab_size = np.max(data)+1

    ratios = fnc(data, num_series, resolutions, buffer_size, vocab_size)
    coordinates = np.argwhere(ratios > 0.0)
    nz_values = ratios[ratios > 0.0]
    print(np.hstack((coordinates, nz_values[:,None])))
    print('0/0 precedes 0/0 in 1 out of 3 cases: {}'.format(np.isclose(ratios[0,0,0,0,0], 1.0/3.0)))
    print('1/2 precedes 0/0 in 2 out of 3 cases: {}'.format(np.isclose(ratios[0,0,1,2,0], 2.0/3.0)))

预期的输出(21对,坐标为5列,后跟找到的计数):

[[0 0 0 0 0 1]
 [0 0 0 1 0 1]
 [0 0 1 2 0 2]
 [0 1 0 0 0 1]
 [0 1 0 2 1 1]
 [0 1 1 1 0 1]
 [0 1 1 3 1 1]
 [0 2 0 3 1 1]
 [0 2 1 3 1 1]
 [0 3 0 1 1 1]
 [0 3 1 3 1 1]
 [1 1 0 0 0 1]
 [1 1 1 2 0 1]
 [1 2 0 0 0 1]
 [1 2 0 1 0 1]
 [1 2 1 1 0 1]
 [1 2 1 2 0 1]
 [1 3 0 1 1 1]
 [1 3 0 2 1 1]
 [1 3 0 3 1 1]
 [1 3 1 3 1 3]]

在上面的示例中,序列0的0在三个案例中的两个中紧随序列1的2(由于缓冲区是圆形的),因此[0,0,1,2,0]的比率为〜 0.6666。同样,系列0,值0在三种情况中的一种也跟随其自身,因此[0,0,0,0,0]处的比率约为0.3333。还有其他一些> 0.0。


我正在两个数据集上测试每个答案:一个微小的数据集(如上所示)和一个更现实的数据集(100个系列,5个分辨率,每个系列10个值,50个符号)。

结果

Answer        Time (tiny)     Time (huge)     All pairs found (tiny=21)
-----------------------------------------------------------------------
Baseline      ~1ms            ~675s (!)       Yes
Saedeas       ~0.13ms         ~1.4ms          No (!)
Saedeas2      ~0.20ms         ~4.0ms          Yes, +cross resolutions
Elliot_1      ~0.70ms         ~100s (!)       Yes
Elliot_2      ~1ms            ~21s (!)        Yes
Kuppern_1     ~0.39ms         ~2.4s (!)       Yes
Kuppern_2     ~0.18ms         ~28ms           Yes
Kuppern_3     ~0.19ms         ~24ms           Yes
David         ~0.21ms         ~27ms           Yes

Saedeas第二种方法无疑是赢家!非常感谢大家:)

4 个答案:

答案 0 :(得分:3)

如果我正确地理解了您的问题,我认为这段代码将以相对较快的矢量化方式为您提供所需的符号对。

import numpy as np
import time
from collections import Counter

series = 2
resolutions = 2
buffer_len = 3
symbols = range(3)

#mat = np.random.choice(symbols, size=(series, resolutions, buffer_len)).astype('uint8')

mat = np.array([
        [[0, 0, 1],  # series 0, resolution 0
         [1, 3, 2]],  # series 0, resolution 1
        [[2, 1, 2],  # series 1, resolution 0
         [3, 3, 3]],  # series 1, resoltuion 1
    ])

start = time.time()
index_mat = np.indices(mat.shape)

right_shift_indices = np.roll(index_mat, -1, axis=3)
mat_shifted = mat[right_shift_indices[0], right_shift_indices[1], right_shift_indices[2]]

# These construct all the pairs directly
first_series = np.repeat(range(series), series*resolutions*buffer_len)
second_series = np.tile(np.repeat(range(series), resolutions*buffer_len), series)
res_loop = np.tile(np.repeat(range(resolutions), buffer_len), series*series)
mat_unroll = np.repeat(mat, series, axis=0)
shift_unroll = np.tile(mat_shifted, series)

# Constructs the pairs
pairs = zip(np.ravel(first_series),
            np.ravel(second_series),
            np.ravel(res_loop),
            np.ravel(mat_unroll),
            np.ravel(shift_unroll))

pair_time = time.time() - start
results = Counter(pairs)
end = time.time() - start

print("Mat: {}").format(mat)
print("Pairs: {}").format(results)
print("Number of Pairs: {}".format(len(pairs)))
print("Pair time is: {}".format(pair_time))
print("Count time is: {}".format(end-pair_time))
print("Total time is: {}".format(end))

基本思想是根据每个缓冲区的时间序列将每个缓冲区循环移位适当的数量(我认为这是您当前的代码正在执行的操作)。然后,我只需沿序列轴将偏移1的列表压缩在一起,即可生成所有符号对。

示例输出:

Mat: [[[0 0 1]
  [1 3 2]]

 [[2 1 2]
  [3 3 3]]]
Pairs: Counter({(1, 1, 1, 3, 3): 3, (1, 0, 0, 2, 0): 2, (0, 0, 0, 0, 0): 1, (1, 1, 0, 2, 2): 1, (1, 1, 0, 2, 1): 1, (0, 1, 0, 0, 2): 1, (1, 0, 1, 3, 3): 1, (0, 0, 1, 1, 3): 1, (0, 0, 1, 3, 2): 1, (1, 0, 0, 1, 1): 1, (0, 1, 0, 0, 1): 1, (0, 1, 1, 2, 3): 1, (0, 1, 0, 1, 2): 1, (1, 1, 0, 1, 2): 1, (0, 1, 1, 3, 3): 1, (1, 0, 1, 3, 2): 1, (0, 0, 0, 0, 1): 1, (0, 1, 1, 1, 3): 1, (0, 0, 1, 2, 1): 1, (0, 0, 0, 1, 0): 1, (1, 0, 1, 3, 1): 1})
Number of Pairs: 24
Pair time is: 0.000135183334351
Count time is: 5.10215759277e-05
Total time is: 0.000186204910278

编辑:真正的最终尝试。完全矢量化。

答案 1 :(得分:3)

开始时,您没有显式地嵌套for循环,这对您造成了一些损害。您最终需要付出很多努力,却没有节省任何内存。嵌套循环后,您可以将某些计算从一个级别移到另一级别,并找出可以对哪些内部循环进行矢量化处理。

def supports_5_loop(data, num_series, resolutions, buffer_size, vocab_size):
    ratios = np.full((num_series, vocab_size, num_series, vocab_size, resolutions), 0.0)
    for res in xrange(resolutions):
        for s0 in xrange(num_series):
            # Find the positions where s0==v0
            for v0 in np.unique(data[s0, res]):
                # only need to find indices once for each series and value
                found0 = np.where(data[s0, res, :] == v0)[0]
                for s1 in xrange(num_series):
                    # Check how often s1==v1 right before s0==v0
                    candidates = (s1, res, (found0 - 1 + buffer_size) % buffer_size)
                    total01 = np.logical_or(data[s0, res, :] >= 0, data[s1, res, :] >= 0).sum()
                    # can skip inner loops if there are no candidates
                    if total01 == 0:
                        continue
                    for v1 in xrange(vocab_size):
                        found01 = np.count_nonzero(data[candidates] == v1)
                        if found01 == 0:
                            continue

                        ratio = (float(found01) / total01)
                        ratios[(s0, v0, s1, v1, res)] = ratio

    return ratios

您会发现,大部分的提速来自不重复努力。

完成嵌套结构后,就可以开始研究矢量化和其他优化了。

def supports_4_loop(data, num_series, resolutions, buffer_size, vocab_size):
    # For small test matrices we can calculate the complete matrix without problems

    # This is huge! :/
    # dimensions:
    #   series and value for which we calculate,
    #   series and value which precedes that measurement,
    #   resolution
    ratios = np.full((num_series, vocab_size, num_series, vocab_size, resolutions), 0.0)

    for res in xrange(resolutions):
        for s0 in xrange(num_series):
            # find the counts where either s0 or s1 are present
            total01 = np.logical_or(data[s0, res] >= 0,
                                    data[:, res] >= 0).sum(axis=1)
            s1s = np.where(total01)[0]
            # Find the positions where s0==v0
            v0s, counts = np.unique(data[s0, res], return_counts=True)
            # sorting before searching will show gains as the datasets
            # get larger
            indarr = np.argsort(data[s0, res])
            i0 = 0
            for v0, count in itertools.izip(v0s, counts):
                found0 = indarr[i0:i0+count]
                i0 += count
                for s1 in s1s:
                    candidates = data[(s1, res, (found0 - 1) % buffer_size)]
                    # can replace the innermost loop with numpy functions
                    v1s, counts = np.unique(candidates, return_counts=True)
                    ratios[s0, v0, s1, v1s, res] = counts / total01[s1]

    return ratios

不幸的是,我只能对最内层的循环进行矢量化处理,这只能使速度提高10%。在最内层循环之外,您不能保证所有向量的大小都相同,因此无法构建数组。

In [121]: (np.all(supports_loop(data, num_series, resolutions, buffer_size, vocab_size) == supports_5_loop(data, num_series, resolutions, buffer_size, vocab_size)))
Out[121]: True

In [122]: (np.all(supports_loop(data, num_series, resolutions, buffer_size, vocab_size) == supports_4_loop(data, num_series, resolutions, buffer_size, vocab_size)))
Out[122]: True
In [123]: %timeit(supports_loop(data, num_series, resolutions, buffer_size, vocab_size))
2.29 ms ± 73.9 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)

In [124]: %timeit(supports_5_loop(data, num_series, resolutions, buffer_size, vocab_size))
949 µs ± 5.37 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)

In [125]: %timeit(supports_4_loop(data, num_series, resolutions, buffer_size, vocab_size))
843 µs ± 3.21 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)

答案 2 :(得分:1)

使向量可矢量化的一个技巧是为每对序列创建comb[i] = buffer1[i]+buffer2[i-1]*voc_size的数组。然后,每个组合都会在数组中获得一个唯一值。通过执行v1[i] = comb[i] % voc_size, v2[i] = comb[i]//voc_size可以找到组合。只要序列的数量不是很高(我认为<10000),就没有必要进行进一步的向量化了。

def support_vectorized(data, num_series, resolutions, buffer_size, vocab_size):
    ratios = np.zeros((num_series, vocab_size, num_series, vocab_size, resolutions))
    prev = np.roll(data, 1, axis=2)  # Get previous values
    prev *= vocab_size  # To separate prev from data
    for i, series in enumerate(data):
        for j, prev_series in enumerate(prev):
            comb = series + prev_series
            for k, buffer in enumerate(comb):
                idx, counts = np.unique(buffer, return_counts=True)
                v = idx % vocab_size    
                v2 = idx // vocab_size
                ratios[i, v, j, v2, k] = counts/buffer_size
    return ratios

如果S或R大,则可以进行完全矢量化,但这会占用大量内存:

def row_unique(comb):
    comb.sort(axis=-1)
    changes = np.concatenate((
        np.ones((comb.shape[0], comb.shape[1], comb.shape[2], 1), dtype="bool"),
        comb[:, :,:, 1:] != comb[:, :, :, :-1]), axis=-1)
    vals = comb[changes]
    idxs = np.nonzero(changes)
    tmp = np.hstack((idxs[-1], 0))
    counts = np.where(tmp[1:], np.diff(tmp), comb.shape[-1]-tmp[:-1])
    return idxs, vals, counts


def supports_full_vectorized(data, num_series, resolutions, buffer_size, vocab_size):
    ratios = np.zeros((num_series, vocab_size, num_series, vocab_size, resolutions))
    prev = np.roll(data, 1, axis=2)*vocab_size
    comb = data + prev[:, None]  # Create every combination
    idxs, vals, counts = row_unique(comb)  # Get unique values and counts for each row
    ratios[idxs[1], vals % vocab_size, idxs[0], vals // vocab_size, idxs[2]] = counts/buffer_size
    return ratios

但是,对于S=100,这比previos解决方案要慢。一个中间立场是,在系列上保持for循环也可以减少内存使用量:

def row_unique2(comb):
    comb.sort(axis=-1)
    changes = np.concatenate((
        np.ones((comb.shape[0], comb.shape[1], 1), dtype="bool"),
        comb[:, :, 1:] != comb[:, :, :-1]), axis=-1)
    vals = comb[changes]
    idxs = np.nonzero(changes)
    tmp = np.hstack((idxs[-1], 0))
    counts = np.where(tmp[1:], np.diff(tmp), comb.shape[-1]-tmp[:-1])
    return idxs, vals, counts


def supports_half_vectorized(data, num_series, resolutions, buffer_size, vocab_size):
    prev = np.roll(data, 1, axis=2)*vocab_size
    ratios = np.zeros((num_series, vocab_size, num_series, vocab_size, resolutions))
    for i, series in enumerate(data):
        comb = series + prev
        idxs, vals, counts = row_unique2(comb)
        ratios[i, vals % vocab_size, idxs[0], vals // vocab_size, idxs[1]] = counts/buffer_size
    return ratios

不同解决方案的运行时间表明support_half_vectorized是最快的

In [41]: S, R, B, voc_size = (100, 5, 1000, 29)

In [42]: data = np.random.randint(voc_size, size=S*R*B).reshape((S, R, B))

In [43]: %timeit support_vectorized(data, S, R, B, voc_size)
1 loop, best of 3: 4.84 s per loop

In [44]: %timeit supports_full_vectorized(data, S, R, B, voc_size)
1 loop, best of 3: 5.3 s per loop

In [45]: %timeit supports_half_vectorized(data, S, R, B, voc_size)
1 loop, best of 3: 4.36 s per loop

In [46]: %timeit supports_4_loop(data, S, R, B, voc_size)
1 loop, best of 3: 36.7 s per loop

答案 3 :(得分:1)

所以这是一个解决方案,但是我一直在使用@Saedeas的答案,并且根据我的机器上的时间,我们可以对其进行一些优化。我确实相信有一种方法可以不用循环,但是中间数组的大小可能会令人望而却步。

我所做的更改是删除在std::unique_ptr函数末尾发生的串联。这正在创建一个新数组,这是不必要的。取而代之的是,我们在开头创建完整大小的数组,而只是不使用最后一行直到结尾。

我进行的另一项更改是std::shared_ptr的拼贴效果略低。我已经用非常快的代码替换了它。

我确实认为可以更快地完成此操作,但是需要一些工作。我正在测试更大尺寸的产品,所以请让我知道您在计算机上获得的时间。

代码在下面;

run()