我正在尝试计算由纬度和经度识别的一长串位置列表的距离矩阵。经度使用Haversine公式,该公式采用两个坐标对元组来产生距离:
Personas has many PersonaHistory
我可以使用嵌套for循环计算所有点之间的距离,如下所示:
def haversine(point1, point2, miles=False):
""" Calculate the great-circle distance bewteen two points on the Earth surface.
:input: two 2-tuples, containing the latitude and longitude of each point
in decimal degrees.
Example: haversine((45.7597, 4.8422), (48.8567, 2.3508))
:output: Returns the distance bewteen the two points.
The default unit is kilometers. Miles can be returned
if the ``miles`` parameter is set to True.
"""
使用简单的功能:
data.head()
id coordinates
0 1 (16.3457688674, 6.30354512503)
1 2 (12.494749307, 28.6263955635)
2 3 (27.794615136, 60.0324947881)
3 4 (44.4269923769, 110.114216113)
4 5 (-69.8540884125, 87.9468778773)
但是考虑到时间的复杂性,这需要相当长的时间,在500分左右的时候运行在20分左右,而且我的列表更长。这让我看到了矢量化,并且我遇到了distance = {}
def haver_loop(df):
for i, point1 in df.iterrows():
distance[i] = []
for j, point2 in df.iterrows():
distance[i].append(haversine(point1.coordinates, point2.coordinates))
return pd.DataFrame.from_dict(distance, orient='index')
((docs),但无法弄清楚如何在这种情况下应用它。
答案 0 :(得分:11)
来自haversine's function definition
,它看起来很漂亮可并行化。因此,使用NumPy aka broadcasting
进行矢量化的最佳工具之一,并用NumPy等效项ufuncs
替换数学函数,这是一个矢量化解决方案 -
# Get data as a Nx2 shaped NumPy array
data = np.array(df['coordinates'].tolist())
# Convert to radians
data = np.deg2rad(data)
# Extract col-1 and 2 as latitudes and longitudes
lat = data[:,0]
lng = data[:,1]
# Elementwise differentiations for lattitudes & longitudes
diff_lat = lat[:,None] - lat
diff_lng = lng[:,None] - lng
# Finally Calculate haversine
d = np.sin(diff_lat/2)**2 + np.cos(lat[:,None])*np.cos(lat) * np.sin(diff_lng/2)**2
return 2 * 6371 * np.arcsin(np.sqrt(d))
运行时测试 -
另一个np.vectorize based solution
已经显示出对原始代码的性能改进有一些积极的承诺,因此本节将比较基于发布的广播方法与该方法。
功能定义 -
def vectotized_based(df):
haver_vec = np.vectorize(haversine, otypes=[np.int16])
return df.groupby('id').apply(lambda x: pd.Series(haver_vec(df.coordinates, x.coordinates)))
def broadcasting_based(df):
data = np.array(df['coordinates'].tolist())
data = np.deg2rad(data)
lat = data[:,0]
lng = data[:,1]
diff_lat = lat[:,None] - lat
diff_lng = lng[:,None] - lng
d = np.sin(diff_lat/2)**2 + np.cos(lat[:,None])*np.cos(lat) * np.sin(diff_lng/2)**2
return 2 * 6371 * np.arcsin(np.sqrt(d))
计时 -
In [123]: # Input
...: length = 500
...: d1 = np.random.uniform(-90, 90, length)
...: d2 = np.random.uniform(-180, 180, length)
...: coords = tuple(zip(d1, d2))
...: df = pd.DataFrame({'id':np.arange(length), 'coordinates':coords})
...:
In [124]: %timeit vectotized_based(df)
1 loops, best of 3: 1.12 s per loop
In [125]: %timeit broadcasting_based(df)
10 loops, best of 3: 68.7 ms per loop
答案 1 :(得分:2)
您可以将您的函数作为np.vectorize()
的参数提供,然后可以将其用作pandas.groupby.apply
的参数,如下所示:
haver_vec = np.vectorize(haversine, otypes=[np.int16])
distance = df.groupby('id').apply(lambda x: pd.Series(haver_vec(df.coordinates, x.coordinates)))
例如,样本数据如下:
length = 500
df = pd.DataFrame({'id':np.arange(length), 'coordinates':tuple(zip(np.random.uniform(-90, 90, length), np.random.uniform(-180, 180, length)))})
比较500分:
def haver_vect(data):
distance = data.groupby('id').apply(lambda x: pd.Series(haver_vec(data.coordinates, x.coordinates)))
return distance
%timeit haver_loop(df): 1 loops, best of 3: 35.5 s per loop
%timeit haver_vect(df): 1 loops, best of 3: 593 ms per loop
答案 2 :(得分:0)
首先使用itertools.product
results= [(p1,p2,haversine(p1,p2))for p1,p2 in itertools.product(points,repeat=2)]
表示我不确定它的速度有多快,看起来可能是Python: speeding up geographic comparison
的副本