这是我根据Coursera深度学习专业课程修改的神经网络,用于在包含平坦训练数据数组的数据集上进行训练:
array([[0., 0., 0., 0., 0.],
[3., 1., 3., 6., 0.],
[0., 0., 0., 0., 0.],
[4., 9., 0., 0., 0.],
[5., 9., 6., 0., 0.]])
这可以按预期工作,但是我很难预测一个例子。
如果我使用:
var requests = [];
requests.push($http.get('FIRSTRESTURL', {'cache': false}));
requests.push($http.get('SECONDRESTURL', {'cache': false}));
$q.all(requests).then(function (responses) {
var values = [];
for (var x in responses) {
responses[x].success(function(data){
values.push(data);
});
}
$scope.results = MyService.doCalculation(values);
});
返回错误:
%reset -s -f
import numpy as np
import math
def sigmoid(x):
return 1 / (1 + np.exp(-x))
def initialize_with_zeros(dim):
w = np.zeros(shape=(dim, 1))
b = 0
return w, b
X = np.array([[1,1,1,1],[1,0,1,0] , [1,1,1,0], [0,0,0,0], [0,1,0,0], [0,1,0,1]])
Y = np.array([[1,0,1,1,1,1]])
X = X.reshape(X.shape[0], -1).T
Y = Y.reshape(Y.shape[0], -1).T
print('X shape' , X.shape)
print('Y shape' , Y.shape)
b = 1
w, b = initialize_with_zeros(4)
def propagate(w, b, X, Y) :
m = X.shape[1]
A = sigmoid(np.dot(w.T, X) + b) # compute activation
cost = (- 1 / m) * np.sum(Y * np.log(A) + (1 - Y) * (np.log(1 - A))) # compute cost
dw = (1./m)*np.dot(X,((A-Y).T))
db = (1./m)*np.sum(A-Y, axis=1)
cost = np.squeeze(cost)
grads = {"dw": dw,
"db": db}
return grads, cost
propagate(w , b , X , Y)
learning_rate = .001
costs = []
def optimize(w , b, X , Y) :
for i in range(2):
grads, cost = propagate(w=w, b=b, X=X, Y=Y)
dw = grads["dw"]
db = grads["db"]
w = w - learning_rate*dw
b = b - learning_rate*db
if i % 100 == 0:
costs.append(cost)
return w , b
w , b = optimize(w , b , X , Y)
def predict(w, b, X):
m = 6
Y_prediction = np.zeros((1,m))
# w = w.reshape(X.shape[0], 1)
A = sigmoid(np.dot(w.T, X) + b)
for i in range(A.shape[1]):
if A[0, i] >= 0.5:
Y_prediction[0, i] = 1
else:
Y_prediction[0, i] = 0
return Y_prediction
predict(w , b, X)
如何重新安排矩阵运算以预测单个实例?
答案 0 :(得分:1)
尝试
x <= L = 10^9
似乎您L
函数期望pi(x)
是二维的,当仅传递一个predict(w, b, X[:1])
时,它应该具有单调的第二维(即shape =(6,1 )),而不是一维(即shape =(6,))。
答案 1 :(得分:0)
该错误来自以下事实:预测期望在形状为... * bs
的一批数据上调用。为了预测单个元素,您可以使用np.expand_dims
创建一批大小为1的
predict(w, b, np.expand_dims(X[0], axis=1)
应该工作。