我理解具有反向传播的神经网络应该如何工作。我知道如何使用Python自己的 MLPClassifier 和 fit 函数在sklearn中工作。我正在创建自己的,因为我想更好地了解细节。我将首先展示我的代码(带注释),然后讨论我的问题。
import numpy as np
import scipy as sp
import sklearn as ML
# z: the linear combination of the previous layer
#
# returns the activation for the node
#
def sigmoid(z):
a = 1 / (1 + np.exp(-z))
return a
# z: the contribution of a layer
#
# returns the derivative of the sigmoid evaluated at z
#
def sig_grad(z):
d = (1 - sigmoid(z))*sigmoid(z)
return d
# input: the data we want to train the network with
# hidden_layers: the number of nodes in the hidden layers
# num_layers: how many hidden layers between the input layer and the output layer
# num_output: how many outputs there are... this becomes relevant when we input many features.
#
# returns the activations determined
# and the linear combinations of previous layer's nodes for each layer
#
def feedforward(input, hidden_layers, num_layers, num_output, thresh, weights):
#initialize the vector for inputs AND threshold values
X = np.hstack([thresh[0], input])
#intialize the activations list
A = []
#intialize the linear combos for each layer
Z = []
w = list(weights)
#place ones in the first row of each layer of weights for the threshold
w[0] = np.vstack([np.ones([1,hidden_layers]), w[0]])
for i in range(1,num_layers):
w[i] = np.vstack([np.ones([1,hidden_layers]), weights[i]])
w[-1] = np.vstack([np.ones([1,num_output]), w[-1]])
#the first layer of weights are initialized outside function
#cycle through the hidden layers
for i in range(1, num_layers+1):
Z.append( np.dot(X, w[i-1])); S = sigmoid(Z[i-1]); A.append(S); X = np.hstack([thresh[i], A[i-1]])
#find the output/last layer activations
Z.append( np.dot(X, w[-1]) ); S = sigmoid(Z[-1]); A.append(S);
return A, Z
#
# truth: what we know the output should be
# activations: the activations determined at each node by the sigmoid
# function in the previous feedforward pass
# combos: the linear combinations at each layer in the prev. ff pass
# num_layers: the number of hidden layers
#
# error: the errors determined at each layer; will be needed for gradient descent
#
def backprop(input, truth, activations, combos, num_layers, weights):
#initialize an array of errors for each hidden layer and the output layer
error = [0 for x in range(0,num_layers+1)]
#intialize the lists containing the gradients w.r.t. weights and threshold
derivW = []; derivb = []
#set the output layer since its error is computed differently than the others
error[num_layers] = (activations[num_layers] - truth)*sig_grad(combos[num_layers])
#find the rate of change for weights and thresh for connections to output
derivW.append( activations[num_layers-1]*error[num_layers]); derivb.append(np.sum(error[num_layers]))
if(num_layers > 1):
#find the errors for each of the hidden layers
for i in range(num_layers - 1, 0, -1):
error[i] = np.dot(weights[i+1],error[i+1])*sig_grad(combos[i])
derivW.append( np.outer(activations[i-1], error[i]) ); derivb.append(np.sum(error[i]))
#
#finding the derivative for weights of input to next layer
#
error[0] = np.dot(weights[i],error[i])*sig_grad(combos[0])
derivW.append( np.outer(input, error[0]) ); derivb.append(np.sum(error[0]))
return derivW, derivb
#
# weights: our networks weights to update via gradient descent
# thresh: the threshold values to update for our system
# derivb: the derivative of our cost function with respect to b for each layer
# derivW: the derivative of our cost function with respect to W for each layer
# stepsize: the stepsize we want to take, determines how big of a step we take
#
# returns the updated weights and threshold values for our network
def gradDesc(weights, thresh, derivb, derivW, stepsize, num_layers):
#perform gradient descent
for j in range(100):
for i in range(0, num_layers + 1):
weights[i] = weights[i] - stepsize*derivW[num_layers-i]
thresh[i] = thresh[i] - stepsize*derivb[num_layers-i]
return weights, thresh
#input: the data to send through the network
#hidden_layers: the number of hidden_layers between the input layer and the output layer
#num_layers: the number of nodes in the hidden layer
#num_output: the number of nodes in the output layer
#
#returns the output of the network
#
def nNetwork(input, truth, hidden_layers, num_layers, num_output, maxiter, stepsize):
#assuming that input is an array where each element is an input/sample
#we also need to know the size of each sample itself
m = input.size
thresh = np.random.randn(num_layers + 1, 1)
thresh_weights = np.ones([num_layers + 1, 1])
# initialize the weights as a list because each layer might have
# a different number of weights
weights = []; weights.append(np.random.randn(m,hidden_layers));
if( num_layers > 1):
for i in range(1, num_layers):
weights.append(np.random.randn(hidden_layers, hidden_layers))
weights.append(np.random.randn(hidden_layers, num_output))
for i in range(maxiter):
activations, combos = feedforward(input, hidden_layers, num_layers, num_output, thresh, weights)
derivW, derivb = backprop(input, truth, activations, combos, num_layers, weights)
weights, thresh = gradDesc(weights, thresh, derivb, derivW, stepsize, num_layers)
return weights, thresh
def main():
# a very, very simple neural network
input = np.array([1,0,0])
truth = 0
hidden_layers = 3
num_layers = 2
num_output = 1
#train the network
w, t = nNetwork(input, truth, hidden_layers, num_layers, num_output, maxiter = 10, stepsize = 0.001)
#test the network on a new set of arguments
#activations, combos = feedforward(new_input, hidden_layers = 3, num_layers = 2, thresh = t, weights = w)
main()
我已经在简单的例子中测试了这段代码,其中有一个n维的输入和n维的输出(当我输入NN.py进入控制台时,还不能解决错误,但是当我运行时工作它一块一块地在控制台中)。我有几个问题可以帮助我更好地了解当我输入有m个维度时发生了什么。例如,Python中的数字数据(有1797个样本,每个样本为64x1 - 8x8图像矢量化)。
1)64个像素中的每个像素都被视为输入吗?如果是这样,神经网络是否一次训练一个图像?这对我来说很容易解决。
2)如果神经网络同时训练了所有图像,那么修改我的代码的建议是什么?
3)显然,图像的输出以0,1,2,3,...或9的形式出现。但是,输出是否以向量10x1的形式出现,其中有1 in图像代表的数字和其他地方的0?那么,我的预测向量在1可能的位置具有最高值,对吗?
4)然后,如果#2为真,我不太确定#3会是什么样的。
我为长篇笔记道歉。谢谢你看一看并帮助我更好地理解!