因此我的csv文件存储在本地google colab目录中。它的大小约为3.31 gb。当我运行以下代码行:
truthdata = pd.read_csv("out.csv",header=0)
该会话内存不足,然后重新连接。 请让我知道如何将这个较大的csv文件读入pandas数据框。 谢谢!!
答案 0 :(得分:1)
google collab的资源限制为12GB RAM。您可以做的事情:
在usecols
函数中使用nrows
或pd.read_csv
自变量来限制要读取的列和行的数量。这样会减少内存
按块读取文件,并使用以下功能减少每个块的内存。之后pd.concat
块
该代码不是我的,我从以下链接复制了它,然后进行了调整! https://www.mikulskibartosz.name/how-to-reduce-memory-usage-in-pandas/
def reduce_mem_usage(df, int_cast=True, obj_to_category=False, subset=None):
"""
Iterate through all the columns of a dataframe and modify the data type to reduce memory usage.
:param df: dataframe to reduce (pd.DataFrame)
:param int_cast: indicate if columns should be tried to be casted to int (bool)
:param obj_to_category: convert non-datetime related objects to category dtype (bool)
:param subset: subset of columns to analyse (list)
:return: dataset with the column dtypes adjusted (pd.DataFrame)
"""
start_mem = df.memory_usage().sum() / 1024 ** 2;
gc.collect()
print('Memory usage of dataframe is {:.2f} MB'.format(start_mem))
cols = subset if subset is not None else df.columns.tolist()
for col in tqdm(cols):
col_type = df[col].dtype
if col_type != object and col_type.name != 'category' and 'datetime' not in col_type.name:
c_min = df[col].min()
c_max = df[col].max()
# test if column can be converted to an integer
treat_as_int = str(col_type)[:3] == 'int'
if int_cast and not treat_as_int:
treat_as_int = check_if_integer(df[col])
if treat_as_int:
if c_min > np.iinfo(np.int8).min and c_max < np.iinfo(np.int8).max:
df[col] = df[col].astype(np.int8)
elif c_min > np.iinfo(np.uint8).min and c_max < np.iinfo(np.uint8).max:
df[col] = df[col].astype(np.uint8)
elif c_min > np.iinfo(np.int16).min and c_max < np.iinfo(np.int16).max:
df[col] = df[col].astype(np.int16)
elif c_min > np.iinfo(np.uint16).min and c_max < np.iinfo(np.uint16).max:
df[col] = df[col].astype(np.uint16)
elif c_min > np.iinfo(np.int32).min and c_max < np.iinfo(np.int32).max:
df[col] = df[col].astype(np.int32)
elif c_min > np.iinfo(np.uint32).min and c_max < np.iinfo(np.uint32).max:
df[col] = df[col].astype(np.uint32)
elif c_min > np.iinfo(np.int64).min and c_max < np.iinfo(np.int64).max:
df[col] = df[col].astype(np.int64)
elif c_min > np.iinfo(np.uint64).min and c_max < np.iinfo(np.uint64).max:
df[col] = df[col].astype(np.uint64)
else:
if c_min > np.finfo(np.float16).min and c_max < np.finfo(np.float16).max:
df[col] = df[col].astype(np.float16)
elif c_min > np.finfo(np.float32).min and c_max < np.finfo(np.float32).max:
df[col] = df[col].astype(np.float32)
else:
df[col] = df[col].astype(np.float64)
elif 'datetime' not in col_type.name and obj_to_category:
df[col] = df[col].astype('category')
gc.collect()
end_mem = df.memory_usage().sum() / 1024 ** 2
print('Memory usage after optimization is: {:.3f} MB'.format(end_mem))
print('Decreased by {:.1f}%'.format(100 * (start_mem - end_mem) / start_mem))
return df
答案 1 :(得分:0)
这取决于您到底想做什么。通常,read_csv有一个名为chunksize
的参数,它允许您遍历数据块。通常,这是有效处理大文件的方法。