Torchvision 0.3.0,用于训练反洗钱服务模型

时间:2019-08-15 02:14:25

标签: azure-machine-learning-service

我正在构建要在AML服务上进行训练的图像,试图在该图像上安装torchvision == 0.3.0。我正在使用的笔记本虚拟机具有torchvision 0.3.0和pytorch 1.1.0,它允许我做我想做的事情...但仅限于笔记本虚拟机上。将作业提交给AML时,出现错误:

发生错误:模块'torchvision.models'没有属性'googlenet'

我已经设法在创建图像时捕获日志。这是摘录的一部分,部分显示了正在发生的事情:

  Created wheel for dill: filename=dill-0.3.0-cp36-none-any.whl size=77512 sha256=b39463bd613a2337f86181d449e55c84446bb76c2fad462b0ff7ed721872f817

  Stored in directory: /root/.cache/pip/wheels/c9/de/a4/a91eec4eea652104d8c81b633f32ead5eb57d1b294eab24167

Successfully built horovod future json-logging-py psutil absl-py pathspec liac-arff dill

Installing collected packages: tqdm, ptvsd, gunicorn, applicationinsights, urllib3, idna, chardet, requests, asn1crypto, cryptography, pyopenssl, isodate, oauthlib, requests-oauthlib, msrest, jsonpickle, azure-common, PyJWT, python-dateutil, adal, msrestazure, azure-mgmt-authorization, azure-mgmt-containerregistry, pyasn1, ndg-httpsclient, pathspec, azure-mgmt-keyvault, websocket-client, docker, contextlib2, azure-mgmt-resource, backports.weakref, backports.tempfile, jeepney, SecretStorage, pytz, azure-mgmt-storage, ruamel.yaml, azure-graphrbac, jmespath, azureml-core, configparser, json-logging-py, werkzeug, click, MarkupSafe, Jinja2, itsdangerous, flask,liac-arff, pandas, dill, azureml-model-management-sdk, azureml-defaults, torchvision, cloudpickle, psutil, horovod, markdown, protobuf, grpcio, absl-py, tensorboard, future

  Found existing installation: torchvision 0.3.0

    Uninstalling torchvision-0.3.0:

      Successfully uninstalled torchvision-0.3.0

Successfully installed Jinja2-2.10.1 MarkupSafe-1.1.1 PyJWT-1.7.1 SecretStorage-3.1.1 absl-py-0.7.1 adal-1.2.2 applicationinsights-0.11.9 asn1crypto-0.24.0 azure-common-1.1.23 azure-graphrbac-0.61.1 azure-mgmt-authorization-0.60.0 azure-mgmt-containerregistry-2.8.0 azure-mgmt-keyvault-2.0.0 azure-mgmt-resource-3.1.0 azure-mgmt-storage-4.0.0 azureml-core-1.0.55 azureml-defaults-1.0.55 azureml-model-management-sdk-1.0.1b6.post1 backports.tempfile-1.0 backports.weakref-1.0.post1 chardet-3.0.4 click-7.0 cloudpickle-1.2.1 configparser-3.7.4 contextlib2-0.5.5 cryptography-2.7 dill-0.3.0 docker-4.0.2 flask-1.0.3 future-0.17.1 grpcio-1.22.0 gunicorn-19.9.0 horovod-0.16.1 idna-2.8 isodate-0.6.0 itsdangerous-1.1.0 jeepney-0.4.1 jmespath-0.9.4 json-logging-py-0.2 jsonpickle-1.2 liac-arff-2.4.0 markdown-3.1.1 msrest-0.6.9 msrestazure-0.6.1 ndg-httpsclient-0.5.1 oauthlib-3.1.0 pandas-0.25.0 pathspec-0.5.9 protobuf-3.9.1 psutil-5.6.3 ptvsd-4.3.2 pyasn1-0.4.6 pyopenssl-19.0.0 python-dateutil-2.8.0 pytz-2019.2 requests-2.22.0 requests-oauthlib-1.2.0 ruamel.yaml-0.15.89 tensorboard-1.14.0 torchvision-0.2.1 tqdm-4.33.0 urllib3-1.25.3 websocket-client-0.56.0 werkzeug-0.15.5

这里没有太多细节,这是我用来创建估算器,然后提交作业的代码。没什么特别花哨的。

我尝试调试图像创建过程(查看日志),这是我捕获上面显示的内容的地方。我还尝试使用python调试器连接到正在运行的进程,和/或登录到正在运行的docker容器内的bash尝试python交互式,以查看我的问题是什么。最初的问题是我无法使用torchvision.models.googlenet,因为它无法确定正在使用的版本。

conda_packages=['pytorch', 'scikit-learn', 'torchvision==0.3.0']
pip_packages=['tqdm', 'ptvsd']

然后我用这个创建估算器:

pyTorchEstimator = PyTorch(source_directory='./aml-image-models',
                           compute_target=ct,
                           entry_script='train_network.py',
                           script_params=script_params,
                           node_count=1,
                           process_count_per_node=1,
                           conda_packages=conda_packages,
                           pip_packages=pip_packages,
                           use_gpu=True,
                           framework_version = '1.1')

并使用典型代码提交。

我希望我在依赖项中指定0.3.0,它将可以正常工作。

有想法吗?

1 个答案:

答案 0 :(得分:1)

torchvision 0.2.1在PyTorch估计器中已针对1.0 / 1.1版本的炬管进行了预配置。 https://docs.microsoft.com/en-us/python/api/azureml-train-core/azureml.train.dnn.pytorch?view=azure-ml-py#remarks

但是,在估算器初始化之后,您仍然可以覆盖Torchvision。

estimator.conda_dependencies.add_pip_package('torchvision==0.3.0')

如果您确定需要的依赖项,则可以选择使用通用的Estimator。

conda_packages=['pytorch', 'scikit-learn', 'torchvision==0.3.0']
pip_packages=['tqdm', 'ptvsd']

estimator = Estimator(source_directory='./aml-image-models',
                      compute_target=ct,
                      entry_script='train_network.py',
                      script_params=script_params,
                      conda_packages=conda_packages,
                      pip_packages=pip_packages,
                      use_gpu=True)