尝试使用Seaborn的FacetGrid
和statsmodels的mosaic
绘制马赛克图的网格,而并非完全如此。
示例数据集:
import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
from statsmodels.graphics.mosaicplot import mosaic
index = [i for j in [[k] * 6 for k in range(4)] for i in j]
gender = ['male', 'male', 'male', 'female', 'female', 'female'] * 4
pet = np.random.choice(['cat', 'dog'], 24).tolist()
data = pd.DataFrame({'index': index, 'gender': gender, 'pet': pet})
data.head(10)
index gender pet
0 0 male dog
1 0 male dog
2 0 male cat
3 0 female dog
4 0 female dog
5 0 female cat
6 1 male cat
7 1 male dog
8 1 male dog
9 1 female dog
我想制作一个2x2的网格,其中包含4个马赛克图,每个网格用于index
列的子集。
现在,说第一组(index == 0
)的单个镶嵌图:
data0 = data[data['index'] == 0]
props = {}
for x in ['female', 'male']:
for y, col in {'dog': 'red', 'cat': 'blue'}.items():
props[(x, y)] ={'color': col}
mosaic(data0, ['gender', 'pet'],
labelizer=lambda k: '',
properties=props)
plt.show()
但是尝试将此镶嵌放在自定义函数sns.FacetGrid.map()
中可能会失败,我失败了(这是一个版本,我尝试了几次):
def my_mosaic(sliced_data, **kwargs):
mosaic(sliced_data, ['gender', 'pet'],
labelizer=lambda k: '',
properties=props)
g = sns.FacetGrid(data, col='index', col_wrap=2)
g = g.map(my_mosaic)
---------------------------------------------------------------------------
TypeError Traceback (most recent call last)
<ipython-input-323-a81a61aaeaff> in <module>()
5
6 g = sns.FacetGrid(data, col='index', col_wrap=2)
----> 7 g = g.map(my_mosaic)
~\AppData\Local\Programs\Python\Python36-32\lib\site-packages\seaborn\axisgrid.py in map(self, func, *args, **kwargs)
741
742 # Draw the plot
--> 743 self._facet_plot(func, ax, plot_args, kwargs)
744
745 # Finalize the annotations and layout
~\AppData\Local\Programs\Python\Python36-32\lib\site-packages\seaborn\axisgrid.py in _facet_plot(self, func, ax, plot_args, plot_kwargs)
825
826 # Draw the plot
--> 827 func(*plot_args, **plot_kwargs)
828
829 # Sort out the supporting information
TypeError: my_mosaic() missing 1 required positional argument: 'sliced_data'
我读了documentation and examples,但我只是想不出如何从Seaborn或matplotlib.pyplot
中未内置的任何绘图函数中创建可调用函数(例如{{ 1}}或plt.scatter
)。
答案 0 :(得分:1)
我发现在最终处理...数据帧时,使用map_dataframe()
更容易。
def my_mosaic(*args,**kwargs):
mosaic(kwargs['data'], list(args),
labelizer=lambda k: '',
properties=props,
ax=plt.gca())
g = sns.FacetGrid(data, col='index', col_wrap=2)
g = g.map_dataframe(my_mosaic, 'gender', 'pet')