我已经在Keras中实现了一个简单的变分自动编码器,在编码器和解码器中有2个卷积层。代码如下所示。现在,我通过两个跳过连接(类似于U-Net)扩展了我的实现。在下面的代码中,跳过连接分别命名为merge1
和merge2
。没有跳过连接,一切正常,但是使用跳过连接,我收到以下错误消息:
ValueError:图形已断开:无法获得张量的值 Tensor(“ encoder_input:0”,shape =(?, 64,80,1),dtype = float32)在 层“ encoder_input”。访问了以下先前的层 没问题:[]
我的代码有问题吗?
import keras
from keras import backend as K
from keras.layers import (Dense, Input, Flatten)
from keras.layers import Conv2D, Lambda, MaxPooling2D, UpSampling2D, concatenate
from keras.models import Model
from keras.layers import Reshape
from keras.losses import mse
def sampling(args):
z_mean, z_log_var = args
batch = K.shape(z_mean)[0]
dim = K.int_shape(z_mean)[1]
epsilon = K.random_normal(shape=(batch, dim))
return z_mean + K.exp(0.5 * z_log_var) * epsilon
image_size = (64,80,1)
inputs = Input(shape=image_size, name='encoder_input')
conv1 = Conv2D(64, 3, activation='relu', padding='same')(inputs)
pool1 = MaxPooling2D(pool_size=(2, 2))(conv1)
conv2 = Conv2D(128, 3, activation='relu', padding='same')(pool1)
pool2 = MaxPooling2D(pool_size=(2, 2))(conv2)
shape = K.int_shape(pool2)
x = Flatten()(pool2)
x = Dense(16, activation='relu')(x)
z_mean = Dense(6, name='z_mean')(x)
z_log_var = Dense(6, name='z_log_var')(x)
z = Lambda(sampling, output_shape=(6,), name='z')([z_mean, z_log_var])
encoder = Model(inputs, [z_mean, z_log_var, z], name='encoder')
latent_inputs = Input(shape=(6,), name='z_sampling')
x = Dense(16, activation='relu')(latent_inputs)
x = Dense(shape[1] * shape[2] * shape[3], activation='relu')(x)
x = Reshape((shape[1], shape[2], shape[3]))(x)
up1 = UpSampling2D((2, 2))(x)
up1 = Conv2D(128, 2, activation='relu', padding='same')(up1)
merge1 = concatenate([conv2, up1], axis=3)
up2 = UpSampling2D((2, 2))(merge1)
up2 = Conv2D(64, 2, activation='relu', padding='same')(up2)
merge2 = concatenate([conv1, up2], axis=3)
out = Conv2D(1, 1, activation='sigmoid')(merge2)
decoder = Model(latent_inputs, out, name='decoder')
outputs = decoder(encoder(inputs)[2])
vae = Model(inputs, outputs, name='vae')
def vae_loss(x, x_decoded_mean):
reconstruction_loss = mse(K.flatten(x), K.flatten(x_decoded_mean))
reconstruction_loss *= image_size[0] * image_size[1]
kl_loss = 1 + z_log_var - K.square(z_mean) - K.exp(z_log_var)
kl_loss = K.sum(kl_loss, axis=-1)
kl_loss *= -0.5
vae_loss = K.mean(reconstruction_loss + kl_loss)
return vae_loss
optimizer = keras.optimizers.Adam(lr=0.001, beta_1=0.9, beta_2=0.999, epsilon=1e-08, decay=0.000)
vae.compile(loss=vae_loss, optimizer=optimizer)
vae.fit(train_X, train_X,
epochs=500,
batch_size=128,
verbose=1,
shuffle=True,
validation_data=(valid_X, valid_X))
答案 0 :(得分:0)
您的解码器将conv1
和conv2
作为输入。不能仅使用Model(latent_inputs, ...)
您需要Model([inputs, latent_inputs], ...)