我正在尝试学习DQN代理,以使用Keras玩井字游戏。问题是我的输出形状与预期不同。
详细信息:
输入形状:(BOARD_SIZE ^ 2) * 3
->它是一个热编码游戏板
输出形状:我希望输出的列表大小为(BOARD_SIZE^2)
,因为它应该包含可用操作的数量
问题:
输出具有输入层[(BOARD_SIZE ^ 2) *3] * Number of actions (BOARD_SIZE^2)
我试图寻找解决方案,但是Keras文档非常差。请帮助
这是我的模型
def create_model(self, game: GameController) -> Sequential:
input_size = (game.shape ** 2) * 3
model = Sequential()
model.add(Dense(input_size, input_dim=1, activation='relu'))
model.add(Dense(int(input_size / 2), activation='relu'))
model.add(Dense(int(input_size / 2), activation='relu'))
model.add(Dense((game.shape ** 2), activation='linear'))
model.compile(loss="mean_squared_error", optimizer=Adam(self.alpha))
return model
这就是我要输出的方式
q_values = self.model.predict(processed_input)
这是预处理程序(一种热编码)
def preprocess_input(self, game: GameController) -> list:
encoded_x = copy.deepcopy(game.board)
encoded_o = copy.deepcopy(game.board)
encoded_blank = copy.deepcopy(game.board)
for row in range(game.shape):
for col in range(game.shape):
if encoded_x[row][col] == 'X':
encoded_x[row][col] = 1
else:
encoded_x[row][col] = 0
if encoded_o[row][col] == 'O':
encoded_o[row][col] = 1
else:
encoded_o[row][col] = 0
if encoded_blank[row][col] == '-':
encoded_blank[row][col] = 1
else:
encoded_blank[row][col] = 0
chained_x = list(chain.from_iterable(encoded_x))
chained_o = list(chain.from_iterable(encoded_o))
chained_blank = list(chain.from_iterable(encoded_blank))
string_board = list(chain(chained_x, chained_o, chained_blank))
board_to_int = [int(element) for element in string_board]
return board_to_int
答案 0 :(得分:0)
好吧,经过几次尝试后,我发现我的输入已经被移调了,所以我将input_dim设置为((BOARD_SIZE ^ 2)* 3),并将input_board重塑为(1,(BOARD_SIZE ^ 2)* 3)已解决的问题。希望将来能对其他人有所帮助:)