所以我正在建立一个神经网络,它将接收2个输入(图像)并返回二进制输出(0或1)。
我已经有我的标签和输入了。
标签和输入的形状如下:
python setup.py install
这是我的代码:
--------Labels--------
(8281,)
--------Images--------
(8281, 500, 500, 1)
它给了我这个错误:
input_front_images1 = Input(shape=(500, 500, 1))
input_front_images2 = Input(shape=(500, 500, 1))
x1=Conv2D(32, kernel_size=3,activation='relu')(input_front_images1)
x2=Conv2D(32, kernel_size=3,activation='relu')(input_front_images2)
x = keras.layers.concatenate([x1, x2])
x = Dense(64, activation='relu')(x)
predictions = Dense(1, activation='sigmoid')(x)
model = Model(inputs=[input_front_images1,input_front_images2],
outputs=predictions)
model.compile( optimizer= 'rmsprop' , loss='categorical_crossentropy' ,
metrics=['accuracy'])
model.summary()
model.fit([image_front_pairs1,image_front_pairs2],
[labels_front_pairs],epochs=2,batch_size=64)
答案 0 :(得分:0)
您必须将Conv2D图层的形状从(H,W,1)更改为(H * W * 1,)
import numpy as np
然后
x = keras.layers.concatenate([x1, x2])
# add this lines to code
dim = np.prod(x._shape[1:])
x = keras.layers.Reshape([dim.value,])(x)
x = Dense(64, activation='relu')(x)
或
x = Dense(64, activation='relu')(x)
# add this lines to code
dim = np.prod(x._shape[1:])
x = keras.layers.Reshape([dim.value,])(x)
predictions = Dense(1, activation='sigmoid')(x)