Keras-嵌入层和GRU层形状错误

时间:2018-11-01 19:48:57

标签: python keras embedding keras-layer

# input_shape = (137861, 21, 1)
# output_sequence_length = 21
# english_vocab_size = 199
# french_vocab_size = 344

def embed_model(input_shape, output_sequence_length, english_vocab_size, french_vocab_size):
    '''
    Build and train a RNN model using word embedding on x and y
    :param input_shape: Tuple of input shape
    :param output_sequence_length: Length of output sequence
    :param english_vocab_size: Number of unique English words in the dataset
    :param french_vocab_size: Number of unique French words in the dataset
    :return: Keras model built, but not trained
    '''

    learning_rate = 1e-3
    model = Sequential()

    model.add(Embedding(english_vocab_size, 128, input_length=output_sequence_length, input_shape=input_shape[1:]))

    model.add(GRU(units=128, return_sequences=True))
    model.add(TimeDistributed(Dense(french_vocab_size)))
    model.add(Activation('softmax'))

    model.summary()

    model.compile(loss=sparse_categorical_crossentropy,
                  optimizer=Adam(learning_rate),
                  metrics=['accuracy'])

    return model

调用此方法来训练模型时,会得到错误:

ValueError: Input 0 is incompatible with layer gru_1: expected ndim=3, found ndim=4

如何解决嵌入层和GRU层之间的形状错误?

1 个答案:

答案 0 :(得分:0)

问题在于嵌入层将2D数组作为输入。但是,输入数组的形状为(137861, 21, 1),使其成为3D数组。只需使用numpy中的squeeze()方法删除最后一个轴:

data = np.squeeze(data, axis=-1)

从侧面来说,这里Dense layer is applied on the last axis by defualt以来,无需使用TimeDistributed层。