我正在尝试在滚动窗口上将Hurst指数应用于SPY收盘价。如果将以下代码应用于收盘价列,则以下代码(我从此处获得:https://www.quantstart.com/articles/Basics-of-Statistical-Mean-Reversion-Testing)效果很好。但是,这给了我一个静态值。考虑到最近200个收盘价,我想在滚动窗口上应用Hurst指数。我的目标是获得一列,其中考虑最后200个收盘价,在每一行中更新Hurst指数。
from numpy import cumsum, log, polyfit, sqrt, std, subtract
from numpy.random import randn
import pandas_datareader as dr
from datetime import date
df = dr.data.get_data_yahoo('SPY',start='23-01-1991',end=date.today())
def hurst(ts):
"""Returns the Hurst Exponent of the time series vector ts"""
# Create the range of lag values
lags = range(2, 100)
# Calculate the array of the variances of the lagged differences
tau = [sqrt(std(subtract(ts[lag:], ts[:-lag]))) for lag in lags]
# Use a linear fit to estimate the Hurst Exponent
poly = polyfit(log(lags), log(tau), 1)
# Return the Hurst exponent from the polyfit output
return poly[0]*2.0
print ("Hurst(SPY): %s" % hurst(df['Close']))
## I've tried the next two lines of code but they are not working for me.
for aRowINDEX in range( 1, 200 ):
df['Hurst_Column'][-aRowINDEX] = hurst (df[u'Close'][:-aRowINDEX]) ## this line produces an error
我是Python的新手,没有运气,我尝试了其他事情。有人可以帮我吗?任何帮助都将受到欢迎。谢谢!
答案 0 :(得分:0)
让我为您提供两个步骤:
步骤1:使用测试数据更健壮的Hurst Exponent实现
第2步:是一种生成类似于“滑动窗口”的计算的简单方法
第3步:稍微复杂一点-如果必须要有“滚动窗口” ...
奖金:我应该在问题代码下写些什么来完成它?
在这里,我将按原样发布一个功能实现,该功能实现取自QuantFX
模块(Py2.7在大多数地方不会造成麻烦,但是任何xrange()
都应替换为{{1 }})。
此代码包含一些改进和某种自我修复(如果测试表明,数据段存在问题(range()
使用自然时间流的约定,其中{{1 }}是“最旧的”时间序列单元,而QuantFX
是“最新的”时间单元)。
不带任何参数调用 data[0]
将产生演示运行,其中显示了有关该主题的一些测试和说明。
data[-1]
也是不言自明的:
HurstEXP()
print( HurstEXP.__doc__ )
def HurstEXP( ts = [ None, ] ): # TESTED: HurstEXP() Hurst exponent ( Browninan Motion & other observations measure ) 100+ BARs back(!)
""" __doc__
USAGE:
HurstEXP( ts = [ None, ] )
Returns the Hurst Exponent of the time series vector ts[]
PARAMETERS:
ts[,] a time-series, with 100+ elements
( or [ None, ] that produces a demo run )
RETURNS:
float - a Hurst Exponent approximation,
as a real value
or
an explanatory string on an empty call
THROWS:
n/a
EXAMPLE:
>>> HurstEXP() # actual numbers will vary, as per np.random.randn() generator used
HurstEXP( Geometric Browian Motion ): 0.49447454
HurstEXP( Mean-Reverting Series ): -0.00016013
HurstEXP( Trending Series ): 0.95748937
'SYNTH series demo ( on HurstEXP( ts == [ None, ] ) ) # actual numbers vary, as per np.random.randn() generator'
>>> HurstEXP( rolling_window( aDSEG[:,idxC], 100 ) )
REF.s:
>>> www.quantstart.com/articles/Basics-of-Statistical-Mean-Reversion-Testing
"""
#---------------------------------------------------------------------------------------------------------------------------<self-reflective>
if ( ts[0] == None ): # DEMO: Create a SYNTH Geometric Brownian Motion, Mean-Reverting and Trending Series:
gbm = np.log( 1000 + np.cumsum( np.random.randn( 100000 ) ) ) # a Geometric Brownian Motion[log(1000 + rand), log(1000 + rand + rand ), log(1000 + rand + rand + rand ),... log( 1000 + rand + ... )]
mr = np.log( 1000 + np.random.randn( 100000 ) ) # a Mean-Reverting Series [log(1000 + rand), log(1000 + rand ), log(1000 + rand ),... log( 1000 + rand )]
tr = np.log( 1000 + np.cumsum( 1 + np.random.randn( 100000 ) ) ) # a Trending Series [log(1001 + rand), log(1002 + rand + rand ), log(1003 + rand + rand + rand ),... log(101000 + rand + ... )]
# Output the Hurst Exponent for each of the above SYNTH series
print ( "HurstEXP( Geometric Browian Motion ): {0: > 12.8f}".format( HurstEXP( gbm ) ) )
print ( "HurstEXP( Mean-Reverting Series ): {0: > 12.8f}".format( HurstEXP( mr ) ) )
print ( "HurstEXP( Trending Series ): {0: > 12.8f}".format( HurstEXP( tr ) ) )
return ( "SYNTH series demo ( on HurstEXP( ts == [ None, ] ) ) # actual numbers vary, as per np.random.randn() generator" )
""" # FIX:
===================================================================================================================
|
|>>> QuantFX.HurstEXP( QuantFX.DATA[ :1000,QuantFX.idxH].tolist() )
0.47537688039105963
|
|>>> QuantFX.HurstEXP( QuantFX.DATA[ :101,QuantFX.idxH].tolist() )
-0.31081076640420308
|
|>>> QuantFX.HurstEXP( QuantFX.DATA[ :100,QuantFX.idxH].tolist() )
nan
|
|>>> QuantFX.HurstEXP( QuantFX.DATA[ :99,QuantFX.idxH].tolist() )
Intel MKL ERROR: Parameter 6 was incorrect on entry to DGELSD.
C:\Python27.anaconda\lib\site-packages\numpy\lib\polynomial.py:594: RankWarning: Polyfit may be poorly conditioned
warnings.warn(msg, RankWarning)
0.026867491053098096
"""
pass; too_short_list = 101 - len( ts ) # MUST HAVE 101+ ELEMENTS
if ( 0 < too_short_list ): # IF NOT:
ts = too_short_list * ts[:1] + ts # PRE-PEND SUFFICIENT NUMBER of [ts[0],]-as-list REPLICAS TO THE LIST-HEAD
#---------------------------------------------------------------------------------------------------------------------------
lags = range( 2, 100 ) # Create the range of lag values
tau = [ np.sqrt( np.std( np.subtract( ts[lag:], ts[:-lag] ) ) ) for lag in lags ] # Calculate the array of the variances of the lagged differences
#oly = np.polyfit( np.log( lags ), np.log( tau ), 1 ) # Use a linear fit to estimate the Hurst Exponent
#eturn ( 2.0 * poly[0] ) # Return the Hurst exponent from the polyfit output
""" ********************************************************************************************************************************************************************* DONE:[MS]:ISSUE / FIXED ABOVE
|>>> QuantFX.HurstEXP( QuantFX.DATA[ : QuantFX.aMinPTR,QuantFX.idxH] )
C:\Python27.anaconda\lib\site-packages\numpy\core\_methods.py:82: RuntimeWarning: Degrees of freedom <= 0 for slice
warnings.warn("Degrees of freedom <= 0 for slice", RuntimeWarning)
C:\Python27.anaconda\lib\site-packages\numpy\core\_methods.py:94: RuntimeWarning: invalid value encountered in true_divide
arrmean, rcount, out=arrmean, casting='unsafe', subok=False)
C:\Python27.anaconda\lib\site-packages\numpy\core\_methods.py:114: RuntimeWarning: invalid value encountered in true_divide
ret, rcount, out=ret, casting='unsafe', subok=False)
QuantFX.py:23034: RuntimeWarning: divide by zero encountered in log
return ( 2.0 * np.polyfit( np.log( lags ), np.log( tau ), 1 )[0] ) # Return the Hurst exponent from the polyfit output ( a linear fit to estimate the Hurst Exponent )
Intel MKL ERROR: Parameter 6 was incorrect on entry to DGELSD.
C:\Python27.anaconda\lib\site-packages\numpy\lib\polynomial.py:594: RankWarning: Polyfit may be poorly conditioned
warnings.warn(msg, RankWarning)
0.028471879418359915
|
|
|# DATA:
|
|>>> QuantFX.DATA[ : QuantFX.aMinPTR,QuantFX.idxH]
memmap([ 1763.31005859, 1765.01000977, 1765.44995117, 1764.80004883,
1765.83996582, 1768.91003418, 1771.04003906, 1769.43994141,
1771.4699707 , 1771.61999512, 1774.76000977, 1769.55004883,
1773.4699707 , 1773.32995605, 1770.08996582, 1770.20996094,
1768.34997559, 1768.02001953, 1767.59997559, 1767.23999023,
1768.41003418, 1769.06994629, 1769.56994629, 1770.7800293 ,
1770.56994629, 1769.7800293 , 1769.90002441, 1770.44995117,
1770.9699707 , 1771.04003906, 1771.16003418, 1769.81005859,
1768.76000977, 1769.39001465, 1773.23999023, 1771.91003418,
1766.92004395, 1765.56994629, 1762.65002441, 1760.18005371,
1755. , 1756.67004395, 1753.48999023, 1753.7199707 ,
1751.92004395, 1745.44995117, 1745.44995117, 1744.54003906,
1744.54003906, 1744.84997559, 1744.84997559, 1744.34997559,
1744.34997559, 1743.75 , 1743.75 , 1745.23999023,
1745.23999023, 1745.15002441, 1745.31005859, 1745.47998047,
1745.47998047, 1749.06994629, 1749.06994629, 1748.29003906,
1748.29003906, 1747.42004395, 1747.42004395, 1746.98999023,
1747.61999512, 1748.79003906, 1748.79003906, 1748.38000488,
1748.38000488, 1744.81005859, 1744.81005859, 1736.80004883,
1736.80004883, 1735.43005371, 1735.43005371, 1737.9699707
], dtype=float32
)
|
|
| # CONVERTED .tolist() to avoid .memmap-type artifacts:
|
|>>> QuantFX.DATA[ : QuantFX.aMinPTR,QuantFX.idxH].tolist()
[1763.31005859375, 1765.010009765625, 1765.449951171875, 1764.800048828125, 1765.8399658203125, 1768.9100341796875, 1771.0400390625, 1769.43994140625, 1771.469970703125, 1771.6199951171875, 1774.760
859375, 1743.75, 1743.75, 1745.239990234375, 1745.239990234375, 1745.1500244140625, 1745.31005859375, 1745.47998046875, 1745.47998046875, 1749.0699462890625, 1749.0699462890625, 1748.2900390625, 174
|
|>>> QuantFX.HurstEXP( QuantFX.DATA[ : QuantFX.aMinPTR,QuantFX.idxH].tolist() )
C:\Python27.anaconda\lib\site-packages\numpy\core\_methods.py:116: RuntimeWarning: invalid value encountered in double_scalars
ret = ret.dtype.type(ret / rcount)
Intel MKL ERROR: Parameter 6 was incorrect on entry to DGELSD.
C:\Python27.anaconda\lib\site-packages\numpy\lib\polynomial.py:594: RankWarning: Polyfit may be poorly conditioned
warnings.warn(msg, RankWarning)
0.028471876494884543
===================================================================================================================
|
|>>> QuantFX.HurstEXP( QuantFX.DATA[ :1000,QuantFX.idxH].tolist() )
0.47537688039105963
|
|>>> QuantFX.HurstEXP( QuantFX.DATA[ :101,QuantFX.idxH].tolist() )
-0.31081076640420308
|
|>>> QuantFX.HurstEXP( QuantFX.DATA[ :100,QuantFX.idxH].tolist() )
nan
|
|>>> QuantFX.HurstEXP( QuantFX.DATA[ :99,QuantFX.idxH].tolist() )
Intel MKL ERROR: Parameter 6 was incorrect on entry to DGELSD.
C:\Python27.anaconda\lib\site-packages\numpy\lib\polynomial.py:594: RankWarning: Polyfit may be poorly conditioned
warnings.warn(msg, RankWarning)
0.026867491053098096
"""
return ( 2.0 * np.polyfit( np.log( lags ), np.log( tau ), 1 )[0] ) # Return the Hurst exponent from the polyfit output ( a linear fit to estimate the Hurst Exponent )
虽然没有足够的内存/处理效率,但可能会在游戏中注入“滚动窗口” 技巧,而没有内存的情况下,这样做带来的处理效率降低(您花费了在语法上合理的代码上进行了很多讨论,但是以这种方式正确执行处理并不会带来任何好处,因为 [ ( -i, HurstEXP( ts = df['Close'][:-i] ) ) for i in range( 1, 200 ) ] # should call the HurstEXP for the last 200 days
的卷积性质无法提供帮助,如果不尝试将其内部代码也重新向量化(为什么以及什么)永远吗?)由此带来的任何更好……只是教授或老板仍然希望您这样做……):
>>> df[u'Close']
Date
1993-01-29 43.937500
1993-02-01 44.250000
...
2019-07-17 297.739990
2019-07-18 297.429993
Name: Close, Length: 6665, dtype: float64
>>>
>>> [ ( -i,
HurstEXP( df[u'Close'][:-i] )
) for i in range( 1, 10 )
]
[ ( -1, 0.4489364467179827 ),
( -2, 0.4489306967683502 ),
( -3, 0.44892205577752986 ),
( -4, 0.448931424819551 ),
( -5, 0.44895272101162326 ),
( -6, 0.44896713741862954 ),
( -7, 0.44898211557287204 ),
( -8, 0.4489941656580211 ),
( -9, 0.4490116318052649 )
]
HurstEXP()
您将获得6566个向量的数组,其中包含“ rolling_window”编辑的100天SPY [Close] -s
def rolling_window( aMatrix, aRollingWindowLENGTH ): #
""" __doc__
USAGE: rolling_window( aMatrix, aRollingWindowLENGTH )
PARAMS: aMatrix a numpy array
aRollingWindowLENGTH a LENGTH of a rolling window
RETURNS: a stride_trick'ed numpy array with rolling windows
THROWS: n/a
EXAMPLE: >>> x = np.arange( 10 ).reshape( ( 2, 5 ) )
>>> rolling_window( x, 3 )
array([[[0, 1, 2], [1, 2, 3], [2, 3, 4]],
[[5, 6, 7], [6, 7, 8], [7, 8, 9]]])
>>> np.mean( rolling_window( x, 3 ), -1 )
array([[ 1., 2., 3.],
[ 6., 7., 8.]])
"""
new_shape = aMatrix.shape[:-1] + ( aMatrix.shape[-1] - aRollingWindowLENGTH + 1, aRollingWindowLENGTH )
new_strides = aMatrix.strides + ( aMatrix.strides[-1], )
return np.lib.stride_tricks.as_strided( aMatrix,
shape = new_shape,
strides = new_strides
)
问:要完成此操作,我应该在问题代码下写些什么?
>>> rolling_window( df[u'Close'], 100 ).shape
(6566, 100)
>>> rolling_window( df[u'Close'], 100 ).flags
C_CONTIGUOUS : False
F_CONTIGUOUS : False
OWNDATA : False <---------------- a VIEW, not a replica
WRITEABLE : True
ALIGNED : True
WRITEBACKIFCOPY : False
UPDATEIFCOPY : False