我使用sklearn.impute.SimpleImputer(strategy='constant',fill_value= 0)
来插补所有缺少常量值(此处为0的常量)的列。
但是,有时候在不同的列中插入不同的常量值是有意义的。例如,我可能想用该列的最大值替换某个列的所有NaN
值,或者用最小值替换某些其他列的NaN
值,或者假设该特定列值的中位数/均值
我该如何实现?
此外,我实际上是该领域的新手,所以我不确定是否这样做会改善我模型的结果。欢迎您发表意见。
答案 0 :(得分:0)
如果要使用不同的任意值或中位数来插补不同的特征,则需要在管道中设置几个SimpleImputer步骤,然后将它们与ColumnTransformer结合起来:
1, 100, NULL
3, 101, NULL
4, 102, 1/1/2019
或者,您可以使用Feature-Engine包,其中的转换器可以让您指定功能:
import pandas as pd
from sklearn.compose import ColumnTransformer
from sklearn.pipeline import Pipeline
from sklearn.impute import SimpleImputer
# first we need to make lists, indicating which features
# will be imputed with each method
features_numeric = ['LotFrontage', 'MasVnrArea', 'GarageYrBlt']
features_categoric = ['BsmtQual', 'FireplaceQu']
# then we instantiate the imputers, within a pipeline
# we create one imputer for numerical and one imputer
# for categorical
# this imputer imputes with the mean
imputer_numeric = Pipeline(steps=[
('imputer', SimpleImputer(strategy='mean')),
])
# this imputer imputes with an arbitrary value
imputer_categoric = Pipeline(
steps=[('imputer',
SimpleImputer(strategy='constant', fill_value='Missing'))])
# then we put the features list and the transformers together
# using the column transformer
preprocessor = ColumnTransformer(transformers=[('imputer_numeric',
imputer_numeric,
features_numeric),
('imputer_categoric',
imputer_categoric,
features_categoric)])
# now we fit the preprocessor
preprocessor.fit(X_train)
# and now we can impute the data
# remember it returs a numpy array
X_train = preprocessor.transform(X_train)
X_test = preprocessor.transform(X_test)
功能引擎返回数据帧。 link中的更多信息。
要安装Feature-Engine,请执行以下操作:
from feature_engine import missing_data_imputers as msi
from sklearn.pipeline import Pipeline as pipe
pipe = pipe([
# add a binary variable to indicate missing information for the 2 variables below
('continuous_var_imputer', msi.AddNaNBinaryImputer(variables = ['LotFrontage', 'GarageYrBlt'])),
# replace NA by the median in the 3 variables below, they are numerical
('continuous_var_median_imputer', msi.MeanMedianImputer(imputation_method='median', variables = ['LotFrontage', 'GarageYrBlt', 'MasVnrArea'])),
# replace NA by adding the label "Missing" in categorical variables (transformer will skip those variables where there is no NA)
('categorical_imputer', msi.CategoricalVariableImputer(variables = ['var1', 'var2'])),
# median imputer
# to handle those, I will add an additional step here
('additional_median_imputer', msi.MeanMedianImputer(imputation_method='median', variables = ['var4', 'var5'])),
])
pipe.fit(X_train)
X_train_t = pipe.transform(X_train)
希望有帮助