我有一个example video的基本代码(视频的前半部分是这样做的,但是数据集不同)。
代码:
<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="utf-8">
<meta http-equiv="X-UA-Compatible" content="IE=edge">
<meta content='width=device-width, initial-scale=1.0, maximum-scale=1.0, user-scalable=0' name='viewport' />
<title>Website</title>
<script src="https://cdn.jsdelivr.net/npm/@tensorflow/tfjs@1.0.0/dist/tf.min.js"></script>
<style>
</style>
<script>
var linearModel = tf.sequential();
linearModel.add(tf.layers.dense({units: 1, inputShape: [1]}));
linearModel.compile({loss: 'meanSquaredError', optimizer: 'sgd'});
var xs = tf.tensor1d([1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100]);
var ys = tf.tensor1d([1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100]);
linearModel.fit(xs, ys);
function linearPrediction(val) {
var output = linearModel.predict(tf.tensor2d([val], [1,1]));
var prediction = Array.from(output.dataSync())[0];
console.log(prediction);
}
linearPrediction(50);
</script>
</head>
<body>
Welcome to my website.
</body>
</html>
我使用100
值训练它,其中输入与输出相同。然后,当我在训练后尝试使用50
作为输入运行它时,得到的结果范围从-50
到60
。
这是正常现象吗?我希望值接近50
。
此外,当我训练一个具有1
至1000
的值的数组并输入500
时,我什至会得到从-600
开始的输出。
答案 0 :(得分:0)
您的代码中有两个主要问题。
linearModel.fit
返回一个Promise,将在培训结束后解决。这意味着,该模型现在将开始训练,但是在训练结束之前,您已经在要求预测。
您必须等待Promise解决。最简单的方法是将代码放入async
函数中,然后像这样使用await
:
(async () => {
var linearModel = tf.sequential();
// ...
await linearModel.fit(xs, ys);
// ...
})();
sgd
的默认学习率是0.01
,在您的情况下该值太高。用该值训练模型对我来说,每次训练迭代的loss
值都增加了,表明学习率很高。如果您需要有关该主题的更多信息,请查阅"estimating an optimal learning rate"上的本指南。
您可以通过使用tf.train.sgd
函数(而不是使用字符串)并按如下所示传递学习率来更改学习率:
linearModel.compile({ loss: 'meanSquaredError', optimizer: tf.train.sgd(0.0001) });
尽管以上技巧应该已经产生接近50
的结果,但是您可以通过训练一个以上的时期来进一步改善模型。您可以像这样传递epochs
参数来训练模型更长的时间:
await linearModel.fit(xs, ys, {
epochs: 10
});
我在以下代码段中为您的代码添加了改进。您可以更改epochs
和learning rate
的值,以查看其如何影响50
的预测结果。
document.querySelector('button').addEventListener('click', async () => {
const learningRate = document.querySelector('#learning_rate').value;
const epochs = document.querySelector('#epochs').value;
const linearModel = tf.sequential();
linearModel.add(tf.layers.dense({ units: 1, inputShape: [1] }));
linearModel.compile({ loss: 'meanSquaredError', optimizer: tf.train.sgd(learningRate) });
const xs = tf.tensor1d([1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100]);
const ys = tf.tensor1d([1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100]);
await linearModel.fit(xs, ys, {
epochs,
callbacks: {
onEpochEnd: (epoch, logs) => console.log(`Loss, epoch ${epoch}: ${logs.loss}`),
},
});
function linearPrediction(val) {
const output = linearModel.predict(tf.tensor1d([val]));
const prediction = Array.from(output.dataSync())[0];
console.log(`Prediction for 50: ${prediction}`);
}
linearPrediction(50);
});
<script src="https://cdn.jsdelivr.net/npm/@tensorflow/tfjs@1.0.0/dist/tf.min.js"></script>
epochs: <input type="number" id="epochs" value="1" />
learning rate: <input type="number" id="learning_rate" value="0.0001" />
<button id="train">Train</button>