我是机器学习和张量流的初学者。在尝试张量流的第一步中,我尝试了一个简单的多元线性回归。然而,似乎该模型陷入了局部最低限度。这是我的代码。
import numpy as np
import tensorflow as tf
import matplotlib.pyplot as plt
def weight_variable(shape):
initial = tf.truncated_normal(shape, stddev=1)
return tf.Variable(initial)
# dataset
xx = np.random.randint(0,1000,[1000,3])/1000.
yy = xx[:,0] * 2 + xx[:,1] * 1.4 + xx[:,2] * 3
# model
x = tf.placeholder(tf.float32, shape=[None, 3])
y_ = tf.placeholder(tf.float32, shape=[None])
W1 = weight_variable([3, 1])
y = tf.matmul(x, W1)
# training and cost function
cost_function = tf.reduce_mean(tf.square(y - y_))
train_function = tf.train.AdamOptimizer(1e-2).minimize(cost_function)
# create a session
sess = tf.Session()
# train
sess.run(tf.initialize_all_variables())
for i in range(10000):
sess.run(train_function, feed_dict={x:xx, y_:yy})
if i % 1000 == 0:
print(sess.run(cost_function, feed_dict={x:xx, y_:yy}))
输出结果为:
14.8449
2.20154
2.18375
2.18366
2.18366
2.18366
2.18366
2.18366
2.18366
输出值(yy)的范围是0到6,因此具有均方误差2.18非常大,因为知道没有噪声添加到数据集中。 我也尝试过GradientDescentOptimizer,学习率为0.1和1e-2,但它并没有太大改善结果。
我的实施有什么问题吗?
答案 0 :(得分:5)
这是因为y
形状与y_
的形状不同。 y
具有形状(1000,1),y_
具有形状(1000)。所以当你减去它们时,你无意中会创建一个二维矩阵。
要解决此问题,请将费用功能更改为:
cost_function = tf.reduce_mean(tf.square(tf.squeeze(y) - y_))
答案 1 :(得分:-2)
如另一个答案所述,你必须使用
predictions = tf.add(b, tf.matmul(x, w))
error = tf.reduce_mean(tf.square(y - predictions))
正如你所说,你是Tensorflow的初学者,你可以看看这里的例子: -