Traceback (most recent call last):
File "run_demo.py", line 185, in <module>
main()
File "run_demo.py", line 153, in main
m.fit_generator(G, 100, epochs=1)
ValueError: Error when checking target: expected crfrnn to have 4 dimensions, but got array with shape (8, 250000, 6)
这是执行我的主文件时出现的确切问题。
我不知道我是否应该尝试更改模型,或者问题出在发电机上。任何人都可以帮助我吗..如果有人希望我可以发送我的github链接来运行整个文件。
我的主文件:
def getImageArr(path, width, height, imgNorm="sub_mean", odering='channels_first'):
try:
img = cv2.imread(path, 1)
if imgNorm == "sub_and_divide":
img = np.float32(cv2.resize(img, (width, height))) / 127.5 - 1
elif imgNorm == "sub_mean":
img = cv2.resize(img, (width, height))
img = img.astype(np.float32)
img[:, :, 0] -= 103.939
img[:, :, 1] -= 116.779
img[:, :, 2] -= 123.68
elif imgNorm == "divide":
img = cv2.resize(img, (width, height))
img = img.astype(np.float32)
img = img / 255.0
if odering == 'channels_first':
img = np.rollaxis(img, 2, 0)
img=img.T
return img
except Exception as e:
print(path, e)
img = np.zeros((height, width, 3))
if odering == 'channels_first':
img = np.rollaxis(img, 2, 0)
img=img.T
return img
def getSegmentationArr(path, nClasses, width, height):
seg_labels = np.zeros((height, width, nClasses))
try:
img = cv2.imread(path, 1)
img = cv2.resize(img, (width, height))
img = img[:, :, 0]
for c in range(nClasses):
seg_labels[:, :, c] = (img == c).astype(int)
except Exception as e:
print(e)
seg_labels = np.reshape(seg_labels, (width * height, nClasses))
return seg_labels
def imageSegmentationGenerator(images_path, segs_path, batch_size, n_classes, input_height, input_width, output_height,output_width):
images = glob.glob(images_path + "*.jpg")
images.sort()
segmentations = glob.glob(segs_path + "*.jpg") + glob.glob(segs_path + "*.png") + glob.glob(segs_path + "*.jpeg")
segmentations.sort()
zipped =itertools.cycle(zip(images, segmentations))
while True:
X = []
Y = []
for _ in range(batch_size):
im,seg = next(zipped,(None,None))
X.append(getImageArr(im, input_width, input_height))
Y.append(getSegmentationArr(seg, n_classes, output_width, output_height))
yield np.array(X), np.array(Y)
def main():
input_file = 'image.jpg'
output_file = 'labels.png'
m= get_crfrnn_model_def()
m.compile(loss='categorical_crossentropy',optimizer='adadelta',metrics=['accuracy'])
G = imageSegmentationGenerator('xtrain/', 'ytrain/', 8, 6,500,500,500,500)
for ep in range(1):
print('pahuch gya')
m.fit_generator(G, 100, epochs=1)