I am working in keras tensorflow on Windows 10
I tried a lot but could'nt find the missing dimension .
# Here is a snippet of my code with summary.
{
train_datagen = ImageDataGenerator( preprocessing_function=None)
train_generator = train_datagen.flow_from_directory(
'human_faces',
target_size=(250,250),
batch_size=3,
class_mode='binary',classes=0)
# input_shape(no. of images/batch_size,height,width,channel(RGB))
model = Sequential()
model.add(Dense(32,batch_size=3, input_shape=(250,250,3)))
model.add(Activation('relu'))
model.add(Dense(10)),
model.add(Activation('softmax'))
model.add(Dropout(0.02))
#layer = Dropout(0.02)
#further layers:
model.add(Dense(units=5)) #hidden layer 1
model.add(Dense(units=4)) #output layer
#model.add(Conv2D(3, (3, 3)))
model.add(Conv2D(3,(3,3),input_shape=
(3,250,250,3),data_format='channels_last'))
model.add(MaxPooling2D(pool_size=(2, 2),input_shape=(3,250,250,3),
data_format='channels_last'))
model.add(Dense(4,batch_size=3,input_shape=(124,124,3)))
model.compile(loss=losses.mean_squared_error, optimizer='sgd')
sgd = optimizers.SGD(lr=0.01, decay=1e-6, momentum=0.9, nesterov=True)
test_generator = ImageDataGenerator()
validation_generator = test_generator.flow_from_directory(
'human_faces/validation',
target_size=(250,250),
batch_size=3,
class_mode=None,classes=0)
model.summary()
model.fit_generator(
train_generator,
steps_per_epoch=1,## batch_size,
#steps_per_epoch=3,
epochs=5,
validation_data=validation_generator,
# validation_steps=61 ) # batch_size)
validation_steps=1)
}
找到了属于4个班级的61张图片。 找到0个图像属于0个类。
dense_1(密集)(3,250,250,32)128
activation_1(激活)(3,250,250,32)0
dense_2(密集)(3,250,250,10)330
activation_2(激活)(3,250,250,10)0
dropout_1(辍学)(3,250,250,10)0
dense_3(密集)(3,250,250,5)55
dense_4(密集)(3,250,250,4)24
conv2d_1(Conv2D)(3,248,248,3)111
max_pooling2d_1(MaxPooling2(3,124,124,3)0
总参数:664 可训练的参数:664 不可训练的参数:0