我正在尝试训练模型Keras,但遇到问题:
g = ImageDataGenerator(featurewise_center=True,
featurewise_std_normalization=True,
rotation_range=45,
width_shift_range=0.2,
height_shift_range=0.2,
horizontal_flip=True,
validation_split=validation_split,
preprocessing_function=lambda x: x / 127 - 1)
g_train = g.flow(x_train, y_train,
batch_size=batch_size,
subset='training')
g_valid = g.flow(x_train, y_train,
batch_size=batch_size,
shuffle=False,
subset='validation')
history = network.fit_generator(g_train,
steps_per_epoch=len(x_train) / 32,
epochs=epochs)
ValueError: Error when checking target: expected predictions to have 4 dimensions, but got array with shape (256, 1)
有人知道为什么吗?在我看来,这很像文档中的示例。
x_train.shape
(50000, 32, 32, 1)
y_train.shape
(50000, 1, 1)