检查目标时出错:预期density_3的形状为(256,),但数组的形状为(1,)

时间:2019-05-16 08:02:03

标签: python image-processing neural-network prediction loss-function

我正在Keras中训练类似VGG16的模型,试图预测具有作为输入图像的继续/事件发生时间值(回归),并遇到以下错误:

  

检查目标时出错:预期density_3的形状为(256,),但   得到形状为(1,)

的数组

这是模型的结构:

Layer (type)                 Output Shape              Param #   
=================================================================
conv2d_1 (Conv2D)            (None, 256, 256, 64)      1792      
_________________________________________________________________
batch_normalization_1 (Batch (None, 256, 256, 64)      256       
_________________________________________________________________
.
.
.

_________________________________________________________________
conv2d_16 (Conv2D)           (None, 16, 16, 512)       2359808   
_________________________________________________________________
batch_normalization_16 (Batc (None, 16, 16, 512)       2048      
_________________________________________________________________
max_pooling2d_5 (MaxPooling2 (None, 8, 8, 512)         0         
_________________________________________________________________
flatten_1 (Flatten)          (None, 32768)             0         
_________________________________________________________________
dense_1 (Dense)              (None, 1000)              32769000  
_________________________________________________________________
dense_2 (Dense)              (None, 1000)              1001000   
_________________________________________________________________
dense_3 (Dense)              (None, 256)               256256    

Total params: 54,072,656
Trainable params: 54,061,648
Non-trainable params: 11,008

我试图在最后只添加一个神经元的层上添加另一层,它似乎可以这样工作,但是我认为这不是正确的方法。 我已经读过类似的问题,但没有找到解决方法。

下面的代码构建的模型的最后一层

#Convolution Layer
#input: 64x64x128, image with 128 channels, appy 256 convolution filters
model.add(Conv2D(512, kernel_size=3, activation='relu',padding='same' ))
#the output of the layer above is 64x64x256

#Normalization layer
model.add(BatchNormalization())

#Convolution Layer
#input: 64x64x128, image with 128 channels, appy 256 convolution filters
model.add(Conv2D(512, kernel_size=3, activation='relu',padding='same' ))
#the output of the layer above is 64x64x256

#Normalization layer
model.add(BatchNormalization())

#Max-Pooling
#poolsize:(2,2), factors by which to downscale (vertical, horizontal)
model.add(MaxPooling2D(pool_size=(2,2), dim_ordering="tf"))

#Flatten layer
model.add(Flatten())

#Fully connected layer 
#number of neurons is chosen randomly
model.add(Dense(1000, activation='relu'))

#Fully connected layer 
model.add(Dense(1000, activation='relu'))


#Fully connected layer 
model.add(Dense(256, activation='softmax'))

model.summary()


#Compile model
model.compile(loss='categorical_crossentropy', optimizer='adagrad')

我也不确定在预测事件发生时间值时应该使用哪种损失函数。

1 个答案:

答案 0 :(得分:0)

model.add(Dense(256, activation='relu'))
model.add(Dense(1, activation='linear'))
model.compile(loss='mean_squared_error', optimizer='adagrad')

将最后一层更改为Relu激活,最后添加一个线性激活层。使用MSE损失,因为这是一个回归问题。