我是深度学习的新手,我想使用预训练(EAST)模型从AI平台服务中进行服务,开发人员可以使用以下文件:
我想将其转换为TensorFlow .pb
格式。有办法吗?我已经从here
完整代码here可用。
我查过here,它显示了以下代码来对其进行转换:
来自tensorflow/models/research/
INPUT_TYPE=image_tensor
PIPELINE_CONFIG_PATH={path to pipeline config file}
TRAINED_CKPT_PREFIX={path to model.ckpt}
EXPORT_DIR={path to folder that will be used for export}
python object_detection/export_inference_graph.py \
--input_type=${INPUT_TYPE} \
--pipeline_config_path=${PIPELINE_CONFIG_PATH} \
--trained_checkpoint_prefix=${TRAINED_CKPT_PREFIX} \
--output_directory=${EXPORT_DIR}
我无法确定要传递的值:
答案 0 :(得分:0)
这是将检查点转换为SavedModel的代码
import os
import tensorflow as tf
trained_checkpoint_prefix = 'models/model.ckpt-49491'
export_dir = os.path.join('export_dir', '0')
graph = tf.Graph()
with tf.compat.v1.Session(graph=graph) as sess:
# Restore from checkpoint
loader = tf.compat.v1.train.import_meta_graph(trained_checkpoint_prefix + '.meta')
loader.restore(sess, trained_checkpoint_prefix)
# Export checkpoint to SavedModel
builder = tf.compat.v1.saved_model.builder.SavedModelBuilder(export_dir)
builder.add_meta_graph_and_variables(sess,
[tf.saved_model.TRAINING, tf.saved_model.SERVING],
strip_default_attrs=True)
builder.save()
答案 1 :(得分:0)
在@Puneith Kaul的回答之后,这是tensorflow 1.7版的语法:
import os
import tensorflow as tf
export_dir = 'export_dir'
trained_checkpoint_prefix = 'models/model.ckpt'
graph = tf.Graph()
loader = tf.train.import_meta_graph(trained_checkpoint_prefix + ".meta" )
sess = tf.Session()
loader.restore(sess,trained_checkpoint_prefix)
builder = tf.saved_model.builder.SavedModelBuilder(export_dir)
builder.add_meta_graph_and_variables(sess, [tf.saved_model.tag_constants.TRAINING, tf.saved_model.tag_constants.SERVING], strip_default_attrs=True)
builder.save()
答案 2 :(得分:0)
如果您将INPUT_TYPE指定为image_tensor,并且 使用此命令将PIPELINE_CONFIG_PATH作为您的配置文件。
python object_detection/export_inference_graph.py \
--input_type=${INPUT_TYPE} \
--pipeline_config_path=${PIPELINE_CONFIG_PATH} \
--trained_checkpoint_prefix=${TRAINED_CKPT_PREFIX} \
--output_directory=${EXPORT_DIR}
您可以在导出目录中以3种格式获取模型;
有关更多信息,https://github.com/tensorflow/models/tree/master/research/object_detection