.pb文件转换为.ckpt(tensorflow)

时间:2017-08-03 18:11:00

标签: python tensorflow protocol-buffers

我已设法使用此脚本将预先训练的.ckpt模型转换为.pb(protobuf)格式:

import os
import tensorflow as tf

# Get the current directory
dir_path = os.path.dirname(os.path.realpath(__file__))
print "Current directory : ", dir_path
save_dir = dir_path + '/Protobufs'

graph = tf.get_default_graph()

# Create a session for running Ops on the Graph.
sess = tf.Session()

print("Restoring the model to the default graph ...")
saver = tf.train.import_meta_graph(dir_path + '/model.ckpt.meta')
saver.restore(sess,tf.train.latest_checkpoint(dir_path))
print("Restoring Done .. ")

print "Saving the model to Protobuf format: ", save_dir

#Save the model to protobuf  (pb and pbtxt) file.
tf.train.write_graph(sess.graph_def, save_dir, "Binary_Protobuf.pb", False)
tf.train.write_graph(sess.graph_def, save_dir, "Text_Protobuf.pbtxt", True)
print("Saving Done .. ")

现在,我想要的是副verca程序。如何加载protobuf文件并将其转换为.ckpt(checkpoint)格式?

我正在尝试使用以下脚本执行此操作,但它总是失败:

import tensorflow as tf
import argparse 

# Pass the filename as an argument
parser = argparse.ArgumentParser()
parser.add_argument("--frozen_model_filename", default="/path-to-pb-file/Binary_Protobuf.pb", type=str, help="Pb model file to import")
args = parser.parse_args()

    # We load the protobuf file from the disk and parse it to retrieve the 
    # unserialized graph_def
with tf.gfile.GFile(args.frozen_model_filename, "rb") as f:
    graph_def = tf.GraphDef()
    graph_def.ParseFromString(f.read())

    #saver=tf.train.Saver()
    with tf.Graph().as_default() as graph:

        tf.import_graph_def(
            graph_def,
            input_map=None,
            return_elements=None,
            name="prefix",
            op_dict=None,
            producer_op_list=None
        )
        sess = tf.Session(graph=graph)
        saver=tf.train.Saver()
        save_path = saver.save(sess, "path-to-ckpt/model.ckpt")
         print("Model saved to chkp format")

我相信拥有这些转换脚本会非常有用。

P.S:权重已经嵌入到.pb文件中。

感谢。

2 个答案:

答案 0 :(得分:0)

似乎你只在两个文件中得到了图形定义,而不是冻结的模型。

# This two lines only save the graph as proto file; it doesn't save the variables and their values. 
tf.train.write_graph(sess.graph_def, save_dir, "Binary_Protobuf.pb", False)
tf.train.write_graph(sess.graph_def, save_dir, "Text_Protobuf.pbtxt", True)

使用freeze_graph file

获取冻结图

答案 1 :(得分:0)

如果您在pb文件中加载模型,它是否可以作为预制模型重新训练。 我使用了" tf.global_variables()"获取可以训练的变量,但是当我加载pb模型时没有变量返回。

tf.global_variables()