我正在解决一个非常简单的算法问题,该问题要求递归和记忆。下面的代码可以正常工作,但不符合时间限制。有人建议我优化尾递归,但这不是尾递归。
问题
•如果下雨,蜗牛每1天可以攀爬2m,否则下坡1m。
•每天下雨的概率为75%。
•在给定天数(<= 1000)和身高(<= 1000)的情况下,计算蜗牛离开井的概率(爬升比高度高)
此python代码是通过递归和记忆实现的。
import sys
sys.setrecursionlimit(10000)
# Probability of success that snails can climb 'targetHeight' within 'days'
def successRate(days, targetHeight):
global cache
# edge case
if targetHeight <= 1:
return 1
if days == 1:
if targetHeight > 2:
return 0
elif targetHeight == 2:
return 0.75
elif targetHeight == 1:
return 0.25
answer = cache[days][targetHeight]
# if the answer is not previously calculated
if answer == -1:
answer = 0.75 * (successRate(days - 1, targetHeight - 2)) + 0.25 * (successRate(days - 1, targetHeight - 1))
cache[days][targetHeight] = answer
return answer
height, duration = map(int, input().split())
cache = [[-1 for j in range(height + 1)] for i in range(duration + 1)] # cache initialized as -1
print(round(successRate(duration, height),7))
答案 0 :(得分:1)
很简单。因此,这只是一个提示。 对于初始零件集:
# suppose cache is allocated
cache[1][1] = 0.25
cache[1][2] = 0.75
for i in range(3,targetHeight+1):
cache[1][i] = 0
for i in range(days+1):
cache[i][1] = 1
cache[i][0] = 1
然后尝试使用初始化的值重写递归部分(您应该像下面这样自下而上进行迭代)。最后,返回cache[days][targetHeight]
的值。
for i in range(2, days+1):
for j in range(2, targetHeight+1):
cache[i][j] = 0.75 * cache[i-1][j-2] + 0.25 * cache[i-1][j-1]