如何将2D频谱图转换为3D交互式

时间:2019-06-23 19:26:54

标签: python matplotlib plot 3d spectrogram

enter image description here我正在尝试在3D交互式图中绘制频谱图。但我无法

我对这里的问题有类似的疑问:How to convert a spectrogram to 3d plot. Python 但是我相信找不到很好的答案

,我也检查了这一点: Dynamic spectrum using plotly 但是代码没有与我一起编译。

'''python

import matplotlib.pyplot as plt
import numpy as np

# Fixing random state for reproducibility
np.random.seed(19680801)

dt = 0.0005
t = np.arange(0.0, 20.0, dt)
s1 = np.sin(2 * np.pi * 100 * t)
s2 = 2 * np.sin(2 * np.pi * 400 * t)

# create a transient "chirp"
s2[t <= 10] = s2[12 <= t] = 0

# add some noise into the mix
nse = 0.01 * np.random.random(size=len(t))

x = s1 + s2 + nse  # the signal
NFFT = 1024  # the length of the windowing segments
Fs = int(1.0 / dt)  # the sampling frequency

fig, (ax1, ax2) = plt.subplots(nrows=2)
ax1.plot(t, x)
Pxx, freqs, bins, im = ax2.specgram(x, NFFT=NFFT, Fs=Fs, 
noverlap=900)
# The `specgram` method returns 4 objects. They are:
# - Pxx: the periodogram
# - freqs: the frequency vector
# - bins: the centers of the time bins
# - im: the matplotlib.image.AxesImage instance representing the data 
in the plot
plt.show()

# Plot with plotly
    trace = [go.Heatmap(
    x= bins,
    y= freqs,
    z= 10*np.log10(Pxx),
    colorscale='Jet',
    )]
    layout = go.Layout(
    title = 'Spectrogram with plotly',
    yaxis = dict(title = 'Frequency'), # x-axis label
    xaxis = dict(title = 'Time'), # y-axis label
    )
fig = go.Figure(data=trace, layout=layout)
pyo.iplot(fig, filename='Spectrogram')

'''

因此,我以文档为例来生成成功的频谱图,但是我无法将其制作为3d图。 理想情况下,我想使其成为交互式3d图。我曾尝试在离线模式下使用plotly。不幸的是,剧情不是生成的

我是python 3d绘图的新手,任何帮助将不胜感激

这是我得到的错误: “ IOPub数据速率已超过。 笔记本服务器将暂时停止发送输出 以避免崩溃。 要更改此限制,请设置config变量 --NotebookApp.iopub_data_rate_limit。”

0 个答案:

没有答案