在RandomForestRegressor sklearn中绘制特征重要性

时间:2019-06-23 15:48:23

标签: python scikit-learn data-science random-forest

我是数据科学领域的新手。我正在尝试找出我的数据集的特征重要性排名。我已经应用了随机森林并获得了输出。

这是我的代码:

Again:
    mov     ax, [si]
    cmp     al, 13      ; If 1st byte is 13, then next byte is just garbage!
    je      CR1         ; ... so no further interpretation needed
    and     al, 0Fh
    inc     si
    cmp     ah, 13      ; If 2nd byte is 13, then result is based on 1st byte
    je      CR2         ; ... and that kind-of zero-replacement
    and     ah, 0F0h
    inc     si
    or      al, ah

    ...

    jmp     Again

CR1:
    xor     al, al
CR2:
    ...

在重要性部分,我几乎复制了以下示例: https://scikit-learn.org/stable/auto_examples/ensemble/plot_forest_importances.html

代码如下:

# importing libraries

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
%matplotlib inline

# importing dataset

dataset=pd.read_csv('Churn_Modelling.csv')
X = dataset.iloc[:,3:12].values
Y = dataset.iloc[:,13].values

#encoding catagorical data

from sklearn.preprocessing import LabelEncoder, OneHotEncoder

#country
labelencoder_X_1= LabelEncoder()
X[:,1]=labelencoder_X_1.fit_transform(X[:,1])

#gender
labelencoder_X_2= LabelEncoder()
X[:,2]=labelencoder_X_2.fit_transform(X[:,2])

onehotencoder = OneHotEncoder(categorical_features=[0])
X = onehotencoder.fit_transform(X).toarray()


#spliting dataset into test set and train set

from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, Y, test_size = 0.20)

from sklearn.ensemble import RandomForestRegressor

regressor = RandomForestRegressor(n_estimators=20, random_state=0)  
regressor.fit(X_train, y_train) 

我期望文档中显示输出。有人可以帮我吗?预先感谢。

我的数据集在这里: enter image description here

1 个答案:

答案 0 :(得分:3)

您有很多功能,无法在一个图中看到。 只需绘制其中一些。

在这里,我列出了最重要的前20个:

# Plot the feature importances of the forest
plt.figure(figsize=(18,9))
plt.title("Feature importances")
n=20
_ = plt.bar(range(n), importances[indices][:n], color="r", yerr=std[indices][:n])
plt.xticks(range(n), indices)
plt.xlim([-1, n])
plt.show()

我的代码,以备不时之需:https://filebin.net/be4h27swglqf3ci3

输出:

enter image description here