我正在唱python库sklearn。我正在使用adaboost分类器,并希望确定哪些功能在分类中最重要。以下是我的代码:
ada = AdaBoostClassifier(n_estimators=100)
selector = RFECV(ada, step=1, cv=5)
selector = selector.fit(np.asarray(total_data), np.asarray(target))
selector.support_
print "featue ranking", selector.ranking_
我收到以下错误:
selector = selector.fit(np.asarray(total_data), np.asarray(target))
File "C:\Python27\lib\site-packages\sklearn\feature_selection\rfe.py", line 336, in fit
ranking_ = rfe.fit(X_train, y_train).ranking_
File "C:\Python27\lib\site-packages\sklearn\feature_selection\rfe.py", line 148, in fit
if estimator.coef_.ndim > 1:
AttributeError: 'AdaBoostClassifier' object has no attribute 'coef_'
有没有人对它有任何了解,以及如何纠正它。
谢谢!
答案 0 :(得分:3)
直接来自RFECV
的文档字符串:
Parameters
----------
estimator : object
A supervised learning estimator with a `fit` method that updates a
`coef_` attribute that holds the fitted parameters. Important features
must correspond to high absolute values in the `coef_` array.
For instance, this is the case for most supervised learning
algorithms such as Support Vector Classifiers and Generalized
Linear Models from the `svm` and `linear_model` modules.
换句话说,RFE目前仅针对线性模型实施。您可以将其更改为使用feature_importances_
代替coef_
并提交补丁,以使其适用于其他模型。