Bin Packing Js实施,使用盒子旋转以获得最佳配合

时间:2019-06-18 05:12:44

标签: javascript html algorithm sorting bin-packing

我在https://github.com/jakesgordon/bin-packing

处使用了bin打包js实现。

当我将帧尺寸指定为800x600

并且块大小为150x700、150x700可以说,它不能容纳但是,有足够的空间。制作700x150和700x150时相同,将适合它。

如何修改代码,以便它可以动态旋转块大小并适合框架。

这里使用的js包装器是

    Packer = function(w, h) {
  this.init(w, h);
};

Packer.prototype = {

  init: function(w, h) {
    this.root = { x: 0, y: 0, w: w, h: h };
  },

  fit: function(blocks) {
    var n, node, block;
    for (n = 0; n < blocks.length; n++) {
      block = blocks[n];
      if (node = this.findNode(this.root, block.w, block.h))
        block.fit = this.splitNode(node, block.w, block.h);
    }
  },

  findNode: function(root, w, h) {
    if (root.used)
      return this.findNode(root.right, w, h) || this.findNode(root.down, w, h);
    else if ((w <= root.w) && (h <= root.h))
      return root;
    else
      return null;
  },

  splitNode: function(node, w, h) {
    node.used = true;
    node.down  = { x: node.x,     y: node.y + h, w: node.w,     h: node.h - h };
    node.right = { x: node.x + w, y: node.y,     w: node.w - w, h: h          };
    return node;
  }

}

2 个答案:

答案 0 :(得分:1)

我认为以下代码可以解决问题...?! (即,我进行了有限的测试,但是对于我所测试的东西,它似乎可以工作。)

我基本上在 findnode 例程中添加了另一个选项,以旋转块(即,切换宽度和高度尺寸)作为一个选项,如果它不适合其预定义的方向。这涉及在 block 中添加另一个称为 rotate 的属性,以指示尺寸已被交换。 (当然,引入交换和 rotate 属性是必要的,必须将 block 传递给 findnode 而不是 w h ,如前面的代码一样。)

Packer = function(w, h) {
  this.init(w, h);
};

Packer.prototype = {

  init: function(w, h) {
    this.root = { x: 0, y: 0, w: w, h: h };
  },

  fit: function(blocks) {
    var n, node, block;
    for (n = 0; n < blocks.length; n++) {
      block = blocks[n];
      block.rotate = false;
      if (node = this.findNode(this.root, block))
        block.fit = this.splitNode(node, block);
    }  
  },

  findNode: function(root, block) {
    if (root.used) {
      return this.findNode(root.right, block) || this.findNode(root.down, block);
    } else if ((block.w <= root.w) && (block.h <= root.h)) {
      return root;
    } else if ((block.h <= root.w) && (block.w <= root.h)) {
        let temp = block.w;
        block.w = block.h;
        block.h = temp;
        block.rotate = !block.rotate;
        return root;
    } else
      return null;
  },

  splitNode: function(node, block) {
    node.used = true;
    node.down  = { x: node.x,           y: node.y + block.h, w: node.w,           h: node.h - block.h };
    node.right = { x: node.x + block.w, y: node.y,           w: node.w - block.w, h: block.h          };
    return node;
  }
}

希望这能帮到您。

答案 1 :(得分:1)

正在添加第二个答案,因为这与第一个答案完全不同,并尝试使用问题中提出的2D Bin Packing算法解决更核心的问题。使用该特定算法,splitNode例程会生成可用于拟合块的downright节点,但没有考虑到随着可用节点的累积,邻接的并集的可能性节点可以容纳更大的块...

例如,在下面提出的算法中,给定800x600的初始堆,放置500x300的块将导致堆中包含两个堆块,分别为(0,300)-(800,600)和(500,0)-(800,600)。这两个heapBlock将在(500,300)-(800,600)区域重叠,以确保在搜索适合块的位置时最大的heapBlock区域被表示。而在2D Bin Packing算法中,downright中没有相交区域,而是偏向于一个或另一个节点的潜在重叠空间...

下面的算法试图通过实现代表最大可用块的可用heapBlocks数组来弥补此缺点,即使这些heapBlocks彼此重叠也是如此。缺点是,这会在遍历要拟合的块的O(n)循环(unionAll)之上引入O(n ^ 2)算法(fit)来管理堆。因此,该算法的性能可能接近O(n ^ 3),尽管这可能是更糟的情况……

Packer = function(w, h) {
  this.init(w, h);
};

Packer.prototype = {

  init: function(w, h) {
    this._root = { x: 0, y: 0, w: w, h: h }
  },

  intersect: function(block0, block1) {
    //
    // Returns the intersecting block of
    // block0 and block1.
    //
    let ix0 = Math.max(block0.x0, block1.x0);
    let ix1 = Math.min(block0.x1, block1.x1);
    let iy0 = Math.max(block0.y0, block1.y0);
    let iy1 = Math.min(block0.y1, block1.y1);

    if (ix0 <= ix1 && iy0 <= iy1) {
      return {x0: ix0, y0: iy0, x1: ix1, y1: iy1};
    } else {
      return null;
    }
  },

  chunkContains:  function(heapBlock0, heapBlock1) {
    //
    // Determine whether heapBlock0 totally encompasses (ie, contains) heapBlock1.
    //
    return heapBlock0.x0 <= heapBlock1.x0 && heapBlock0.y0 <= heapBlock1.y0 && heapBlock1.x1 <= heapBlock0.x1 && heapBlock1.y1 <= heapBlock0.y1;
  },

  expand: function(heapBlock0, heapBlock1) {
    //
    // Extend heapBlock0 and heapBlock1 if they are
    // adjoining or overlapping.
    //
    if (heapBlock0.x0 <= heapBlock1.x0 && heapBlock1.x1 <= heapBlock0.x1 && heapBlock1.y0 <= heapBlock0.y1) {
      heapBlock1.y0 = Math.min(heapBlock0.y0, heapBlock1.y0);
      heapBlock1.y1 = Math.max(heapBlock0.y1, heapBlock1.y1);
    }

    if (heapBlock0.y0 <= heapBlock1.y0 && heapBlock1.y1 <= heapBlock0.y1 && heapBlock1.x0 <= heapBlock0.x1) {
      heapBlock1.x0 = Math.min(heapBlock0.x0, heapBlock1.x0);
      heapBlock1.x1 = Math.max(heapBlock0.x1, heapBlock1.x1);
    }
  },

  unionMax: function(heapBlock0, heapBlock1) {
    //
    // Given two heap blocks, determine whether...
    //
    if (heapBlock0 && heapBlock1) {
      // ...heapBlock0 and heapBlock1 intersect, and if so...
      let i = this.intersect(heapBlock0, heapBlock1);
      if (i) {
        if (this.chunkContains(heapBlock0, heapBlock1)) {
          // ...if heapBlock1 is contained by heapBlock0...
          heapBlock1 = null;
        } else if (this.chunkContains(heapBlock1, heapBlock0)) {
          // ...or if heapBlock0 is contained by heapBlock1...
          heapBlock0 = null;
        } else {
          // ...otherwise, let's expand both heapBlock0 and
          // heapBlock1 to encompass as much of the intersected
          // space as possible.  In this instance, both heapBlock0
          // and heapBlock1 will overlap.
          this.expand(heapBlock0, heapBlock1);
          this.expand(heapBlock1, heapBlock0);
        }
      }
    }
  },

  unionAll: function() {
    //
    // Loop through the entire heap, looking to eliminate duplicative
    // heapBlocks, and to extend adjoining or intersecting heapBlocks,
    // despite this introducing overlapping heapBlocks.
    //
    for (let i = 0; i < this.heap.length; i++) {
      for (let j = 0; j < this.heap.length; j++) {
        if (i !== j) {
          this.unionMax(this.heap[i],this.heap[j]);
          if (this.heap[i] && this.heap[j]) {
            if (this.chunkContains(this.heap[j], this.heap[i])) {
              this.heap[i] = null;
            } else if (this.chunkContains(this.heap[i], this.heap[j])) {
              this.heap[j] = null;
            }
          }
        }
      }
    }
    // Eliminate the duplicative (ie, nulled) heapBlocks.
    let onlyBlocks = [];
    for (let i = 0; i < this.heap.length; i++) {
      if (this.heap[i]) {
        onlyBlocks.push(this.heap[i]);
      }
    }
    this.heap = onlyBlocks;
  },

  fit: function(blocks) {
    //
    // Loop through all the blocks, looking for a heapBlock
    // that it can fit into.
    //
    this.heap = [{x0:0,y0:0,x1:this._root.w, y1: this._root.h}];
    var n, node, block;
    for (n = 0; n < blocks.length; n++) {
      block = blocks[n];
      block.rotate = false;
      if (this.findInHeap(block)) {  
        this.adjustHeap(block);
      } else {
        // If the block didn't fit in its current orientation,
        // rotate its dimensions and look again.
        block.w = block.h + (block.h = block.w, 0);
        block.rotate = true;
        if (this.findInHeap(block)) {
          this.adjustHeap(block);
        }
      }
    }  
  },

  findInHeap: function(block) {
    //
    // Find a heapBlock that can contain the block.
    //
    for (let i = 0; i < this.heap.length; i++) {
      let heapBlock = this.heap[i];
      if (heapBlock && block.w <= heapBlock.x1 - heapBlock.x0 && block.h <= heapBlock.y1 - heapBlock.y0) {
        block.x0 = heapBlock.x0;
        block.y0 = heapBlock.y0;
        block.x1 = heapBlock.x0 + block.w;
        block.y1 = heapBlock.y0 + block.h;
        return true;
      }
    }
    return false;
  },

  adjustHeap:  function(block) {
    //
    // Find all heap entries that intersect with block,
    // and adjust the heap by breaking up the heapBlock
    // into the possible 4 blocks that remain after
    // removing the intersecting portion.
    //
    let n = this.heap.length;
    for (let i = 0; i < n; i++) {
      let heapBlock = this.heap[i];
      let overlap = this.intersect(heapBlock, block);
      if (overlap) {

        // Top
        if (overlap.y1 !== heapBlock.y1) {
          this.heap.push({
            x0: heapBlock.x0,
            y0: overlap.y1,
            x1: heapBlock.x1,
            y1: heapBlock.y1
          });
        }

        // Right
        if (overlap.x1 !== heapBlock.x1) {
          this.heap.push({
            x0: overlap.x1,
            y0: heapBlock.y0,
            x1: heapBlock.x1,
            y1: heapBlock.y1
          });
        }

        // Bottom
        if (heapBlock.y0 !== overlap.y0) {
          this.heap.push({
            x0: heapBlock.x0,
            y0: heapBlock.y0,
            x1: heapBlock.x1,
            y1: overlap.y0
          });
        }

        // Left
        if (heapBlock.x0 != overlap.x0) {
          this.heap.push({
            x0: heapBlock.x0,
            y0: heapBlock.y0,
            x1: overlap.x0,
            y1: heapBlock.y1
          });
        }       

        this.heap[i] = null;
      }
    }

    this.unionAll();
  }

}

fit算法将使heap和传入的blocks数组保留结果。例如...

p = new Packer(2400,1200);
blocks = [{w:2100,h:600},{w:2100,h:600},{w:150,h:200},{w:740,h:200},{w:500,h:100}];
p.fit(blocks);

...将离开p.heapblocks如下...

The final HEAP
[{"x0":2100,"y0":940,"x1":2400,"y1":1200},
{"x0":2300,"y0":500,"x1":2400,"y1":1200},
{"x0":2250,"y0":0,"x1":2300,"y1":200}]

The final BLOCKS
[{"w":2100,"h":600,"rotate":false,"x0":0,"y0":0,"x1":2100,"y1":600},
{"w":2100,"h":600,"rotate":false,"x0":0,"y0":600,"x1":2100,"y1":1200},
{"w":150,"h":200,"rotate":false,"x0":2100,"y0":0,"x1":2250,"y1":200},
{"w":200,"h":740,"rotate":true,"x0":2100,"y0":200,"x1":2300,"y1":940},
{"w":100,"h":500,"rotate":true,"x0":2300,"y0":0,"x1":2400,"y1":500}]

请注意,此算法尚未优化。即,它不对传入的块进行排序(即,按宽度,高度或面积等),也不会在执行unionAll后对堆进行排序,该操作将堆减小为最大大小的heapBlocks列表。 (即,在每次调用unionAll之后,都有机会按宽度,高度或面积等对堆进行排序,以便在搜索堆中要放置的下一个可用块时,如果将堆最大排序为最小,算法会将块放置在最大可用的heapBlock中,或者如果排序为最小到最大,则块将放置在足够大的heapBlock中...)无论如何,将这些优化类型保留为练习

另外,请对这种算法持怀疑态度,并进行适当的测试。