我在https://github.com/jakesgordon/bin-packing
处使用了bin打包js实现。当我将帧尺寸指定为800x600
并且块大小为150x700、150x700可以说,它不能容纳但是,有足够的空间。制作700x150和700x150时相同,将适合它。
如何修改代码,以便它可以动态旋转块大小并适合框架。
这里使用的js包装器是
Packer = function(w, h) {
this.init(w, h);
};
Packer.prototype = {
init: function(w, h) {
this.root = { x: 0, y: 0, w: w, h: h };
},
fit: function(blocks) {
var n, node, block;
for (n = 0; n < blocks.length; n++) {
block = blocks[n];
if (node = this.findNode(this.root, block.w, block.h))
block.fit = this.splitNode(node, block.w, block.h);
}
},
findNode: function(root, w, h) {
if (root.used)
return this.findNode(root.right, w, h) || this.findNode(root.down, w, h);
else if ((w <= root.w) && (h <= root.h))
return root;
else
return null;
},
splitNode: function(node, w, h) {
node.used = true;
node.down = { x: node.x, y: node.y + h, w: node.w, h: node.h - h };
node.right = { x: node.x + w, y: node.y, w: node.w - w, h: h };
return node;
}
}
答案 0 :(得分:1)
我认为以下代码可以解决问题...?! (即,我进行了有限的测试,但是对于我所测试的东西,它似乎可以工作。)
我基本上在 findnode 例程中添加了另一个选项,以旋转块(即,切换宽度和高度尺寸)作为一个选项,如果它不适合其预定义的方向。这涉及在 block 中添加另一个称为 rotate 的属性,以指示尺寸已被交换。 (当然,引入交换和 rotate 属性是必要的,必须将 block 传递给 findnode 而不是 w 和 h ,如前面的代码一样。)
Packer = function(w, h) {
this.init(w, h);
};
Packer.prototype = {
init: function(w, h) {
this.root = { x: 0, y: 0, w: w, h: h };
},
fit: function(blocks) {
var n, node, block;
for (n = 0; n < blocks.length; n++) {
block = blocks[n];
block.rotate = false;
if (node = this.findNode(this.root, block))
block.fit = this.splitNode(node, block);
}
},
findNode: function(root, block) {
if (root.used) {
return this.findNode(root.right, block) || this.findNode(root.down, block);
} else if ((block.w <= root.w) && (block.h <= root.h)) {
return root;
} else if ((block.h <= root.w) && (block.w <= root.h)) {
let temp = block.w;
block.w = block.h;
block.h = temp;
block.rotate = !block.rotate;
return root;
} else
return null;
},
splitNode: function(node, block) {
node.used = true;
node.down = { x: node.x, y: node.y + block.h, w: node.w, h: node.h - block.h };
node.right = { x: node.x + block.w, y: node.y, w: node.w - block.w, h: block.h };
return node;
}
}
希望这能帮到您。
答案 1 :(得分:1)
正在添加第二个答案,因为这与第一个答案完全不同,并尝试使用问题中提出的2D Bin Packing算法解决更核心的问题。使用该特定算法,splitNode
例程会生成可用于拟合块的down
和right
节点,但没有考虑到随着可用节点的累积,邻接的并集的可能性节点可以容纳更大的块...
例如,在下面提出的算法中,给定800x600的初始堆,放置500x300的块将导致堆中包含两个堆块,分别为(0,300)-(800,600)和(500,0)-(800,600)。这两个heapBlock将在(500,300)-(800,600)区域重叠,以确保在搜索适合块的位置时最大的heapBlock区域被表示。而在2D Bin Packing算法中,down
或right
中没有相交区域,而是偏向于一个或另一个节点的潜在重叠空间...
下面的算法试图通过实现代表最大可用块的可用heapBlocks数组来弥补此缺点,即使这些heapBlocks彼此重叠也是如此。缺点是,这会在遍历要拟合的块的O(n)循环(unionAll
)之上引入O(n ^ 2)算法(fit
)来管理堆。因此,该算法的性能可能接近O(n ^ 3),尽管这可能是更糟的情况……
Packer = function(w, h) {
this.init(w, h);
};
Packer.prototype = {
init: function(w, h) {
this._root = { x: 0, y: 0, w: w, h: h }
},
intersect: function(block0, block1) {
//
// Returns the intersecting block of
// block0 and block1.
//
let ix0 = Math.max(block0.x0, block1.x0);
let ix1 = Math.min(block0.x1, block1.x1);
let iy0 = Math.max(block0.y0, block1.y0);
let iy1 = Math.min(block0.y1, block1.y1);
if (ix0 <= ix1 && iy0 <= iy1) {
return {x0: ix0, y0: iy0, x1: ix1, y1: iy1};
} else {
return null;
}
},
chunkContains: function(heapBlock0, heapBlock1) {
//
// Determine whether heapBlock0 totally encompasses (ie, contains) heapBlock1.
//
return heapBlock0.x0 <= heapBlock1.x0 && heapBlock0.y0 <= heapBlock1.y0 && heapBlock1.x1 <= heapBlock0.x1 && heapBlock1.y1 <= heapBlock0.y1;
},
expand: function(heapBlock0, heapBlock1) {
//
// Extend heapBlock0 and heapBlock1 if they are
// adjoining or overlapping.
//
if (heapBlock0.x0 <= heapBlock1.x0 && heapBlock1.x1 <= heapBlock0.x1 && heapBlock1.y0 <= heapBlock0.y1) {
heapBlock1.y0 = Math.min(heapBlock0.y0, heapBlock1.y0);
heapBlock1.y1 = Math.max(heapBlock0.y1, heapBlock1.y1);
}
if (heapBlock0.y0 <= heapBlock1.y0 && heapBlock1.y1 <= heapBlock0.y1 && heapBlock1.x0 <= heapBlock0.x1) {
heapBlock1.x0 = Math.min(heapBlock0.x0, heapBlock1.x0);
heapBlock1.x1 = Math.max(heapBlock0.x1, heapBlock1.x1);
}
},
unionMax: function(heapBlock0, heapBlock1) {
//
// Given two heap blocks, determine whether...
//
if (heapBlock0 && heapBlock1) {
// ...heapBlock0 and heapBlock1 intersect, and if so...
let i = this.intersect(heapBlock0, heapBlock1);
if (i) {
if (this.chunkContains(heapBlock0, heapBlock1)) {
// ...if heapBlock1 is contained by heapBlock0...
heapBlock1 = null;
} else if (this.chunkContains(heapBlock1, heapBlock0)) {
// ...or if heapBlock0 is contained by heapBlock1...
heapBlock0 = null;
} else {
// ...otherwise, let's expand both heapBlock0 and
// heapBlock1 to encompass as much of the intersected
// space as possible. In this instance, both heapBlock0
// and heapBlock1 will overlap.
this.expand(heapBlock0, heapBlock1);
this.expand(heapBlock1, heapBlock0);
}
}
}
},
unionAll: function() {
//
// Loop through the entire heap, looking to eliminate duplicative
// heapBlocks, and to extend adjoining or intersecting heapBlocks,
// despite this introducing overlapping heapBlocks.
//
for (let i = 0; i < this.heap.length; i++) {
for (let j = 0; j < this.heap.length; j++) {
if (i !== j) {
this.unionMax(this.heap[i],this.heap[j]);
if (this.heap[i] && this.heap[j]) {
if (this.chunkContains(this.heap[j], this.heap[i])) {
this.heap[i] = null;
} else if (this.chunkContains(this.heap[i], this.heap[j])) {
this.heap[j] = null;
}
}
}
}
}
// Eliminate the duplicative (ie, nulled) heapBlocks.
let onlyBlocks = [];
for (let i = 0; i < this.heap.length; i++) {
if (this.heap[i]) {
onlyBlocks.push(this.heap[i]);
}
}
this.heap = onlyBlocks;
},
fit: function(blocks) {
//
// Loop through all the blocks, looking for a heapBlock
// that it can fit into.
//
this.heap = [{x0:0,y0:0,x1:this._root.w, y1: this._root.h}];
var n, node, block;
for (n = 0; n < blocks.length; n++) {
block = blocks[n];
block.rotate = false;
if (this.findInHeap(block)) {
this.adjustHeap(block);
} else {
// If the block didn't fit in its current orientation,
// rotate its dimensions and look again.
block.w = block.h + (block.h = block.w, 0);
block.rotate = true;
if (this.findInHeap(block)) {
this.adjustHeap(block);
}
}
}
},
findInHeap: function(block) {
//
// Find a heapBlock that can contain the block.
//
for (let i = 0; i < this.heap.length; i++) {
let heapBlock = this.heap[i];
if (heapBlock && block.w <= heapBlock.x1 - heapBlock.x0 && block.h <= heapBlock.y1 - heapBlock.y0) {
block.x0 = heapBlock.x0;
block.y0 = heapBlock.y0;
block.x1 = heapBlock.x0 + block.w;
block.y1 = heapBlock.y0 + block.h;
return true;
}
}
return false;
},
adjustHeap: function(block) {
//
// Find all heap entries that intersect with block,
// and adjust the heap by breaking up the heapBlock
// into the possible 4 blocks that remain after
// removing the intersecting portion.
//
let n = this.heap.length;
for (let i = 0; i < n; i++) {
let heapBlock = this.heap[i];
let overlap = this.intersect(heapBlock, block);
if (overlap) {
// Top
if (overlap.y1 !== heapBlock.y1) {
this.heap.push({
x0: heapBlock.x0,
y0: overlap.y1,
x1: heapBlock.x1,
y1: heapBlock.y1
});
}
// Right
if (overlap.x1 !== heapBlock.x1) {
this.heap.push({
x0: overlap.x1,
y0: heapBlock.y0,
x1: heapBlock.x1,
y1: heapBlock.y1
});
}
// Bottom
if (heapBlock.y0 !== overlap.y0) {
this.heap.push({
x0: heapBlock.x0,
y0: heapBlock.y0,
x1: heapBlock.x1,
y1: overlap.y0
});
}
// Left
if (heapBlock.x0 != overlap.x0) {
this.heap.push({
x0: heapBlock.x0,
y0: heapBlock.y0,
x1: overlap.x0,
y1: heapBlock.y1
});
}
this.heap[i] = null;
}
}
this.unionAll();
}
}
fit
算法将使heap
和传入的blocks
数组保留结果。例如...
p = new Packer(2400,1200);
blocks = [{w:2100,h:600},{w:2100,h:600},{w:150,h:200},{w:740,h:200},{w:500,h:100}];
p.fit(blocks);
...将离开p.heap
和blocks
如下...
The final HEAP
[{"x0":2100,"y0":940,"x1":2400,"y1":1200},
{"x0":2300,"y0":500,"x1":2400,"y1":1200},
{"x0":2250,"y0":0,"x1":2300,"y1":200}]
The final BLOCKS
[{"w":2100,"h":600,"rotate":false,"x0":0,"y0":0,"x1":2100,"y1":600},
{"w":2100,"h":600,"rotate":false,"x0":0,"y0":600,"x1":2100,"y1":1200},
{"w":150,"h":200,"rotate":false,"x0":2100,"y0":0,"x1":2250,"y1":200},
{"w":200,"h":740,"rotate":true,"x0":2100,"y0":200,"x1":2300,"y1":940},
{"w":100,"h":500,"rotate":true,"x0":2300,"y0":0,"x1":2400,"y1":500}]
请注意,此算法尚未优化。即,它不对传入的块进行排序(即,按宽度,高度或面积等),也不会在执行unionAll
后对堆进行排序,该操作将堆减小为最大大小的heapBlocks列表。 (即,在每次调用unionAll
之后,都有机会按宽度,高度或面积等对堆进行排序,以便在搜索堆中要放置的下一个可用块时,如果将堆最大排序为最小,算法会将块放置在最大可用的heapBlock中,或者如果排序为最小到最大,则块将放置在足够大的heapBlock中...)无论如何,将这些优化类型保留为练习
另外,请对这种算法持怀疑态度,并进行适当的测试。