收到错误“ ValueError:检查目标时出错:预期density_4具有形状(3,)但形状为(2,)的数组”

时间:2019-06-09 15:21:54

标签: python deep-learning artificial-intelligence conv-neural-network text-classification

我正在使用CNN进行文本分类(遵循kim yoon方法) 但出现错误,我无法弄清

我查看了类似问题的帖子,但无法关注

inputs = Input(shape=(sequence_length,))

embedding = embedding_layer(inputs)

reshape = Reshape((sequence_length,embedding_dim,1))(embedding)

conv_0 = Conv2D(num_filters, (filter_sizes[0], 
embedding_dim),activation='relu',kernel_regularizer=regularizers.l2(0.01)) 
(reshape)

conv_1 = 
 Conv2D(num_filters,filter_sizes[1],embedding_dim),activation='relu',
 kernel_regularizer=regulari zers.l2(0.01))(reshape)

conv_2 = Conv2D(num_filters, 
(filter_sizes[2],embedding_dim),activation='relu',kernel_regularizer=
 regularizers.l2(0.01))(reshape)

 maxpool_0 = MaxPooling2D((sequence_length - filter_sizes[0] + 1, 1), 
 strides=(1,1))(conv_0)

 flat_0 = Flatten()(maxpool_0)

 maxpool_1 = MaxPooling2D((sequence_length - filter_sizes[1] + 1, 1), 
 strides=(1,1))(conv_1)

 flat_1 = Flatten()(maxpool_1)

 maxpool_2 = MaxPooling2D((sequence_length - filter_sizes[2] + 1, 1), 
 strides=(1,1))(conv_2)

 flat_2 = Flatten()(maxpool_2)
 merged_tensor = concatenate([flat_0,flat_1, flat_2])
 output = Dense(units=3, 
 activation='softmax',kernel_regularizer=regularizers.l2(0.01(merged_tensor)

ValueError跟踪(最近一次通话最近)  在       1个 ----> 2 model.fit(x_train,y_train,batch_size,epochs = 100,verbose = 1,callbacks = callback)       3#开始训练

ValueError:检查目标时出错:预期density_4的形状为(3,),但数组的形状为(2,)

当然,消息中还有更多数据,如有需要,我会予以整理

dence_4是最终输出

0 个答案:

没有答案