顺序二次编程Matlab实现

时间:2019-06-08 10:32:17

标签: matlab optimization nonlinear-optimization

我的 MATLAB 代码有问题,该问题使用 SQP算法 (顺序二次编程)解决了非线性二次问题。< / strong>,但实际上,在代码的“ QP-SUB问题” 部分中,我已经解析出了“ num2str”错误,但我不知道如何要解决此问题,还必须告诉您该方法使用 KT条件以获得更好的解决方案。 在代码的每个部分中,我都会写一个注释,以更好地理解代码,并在以下代码中找到带有约束的功能:

%   Maximize    f(x1,x2) = x1^4 -2x1^2x2 +x1^2 +x1x2^2 -2x1 +4
%
%               h1(x1,x2) = x1^2 + x2^2 -2 = 0
%               g1(x1,x2) = 0.25x1^2 +0.75x2^2 -1 <=0
%               0 <= x1 <= 4;  0 <= x2 <= 4
%
%--------------------------------------------------------
% The KT conditions for the QP subproblem
% are applied analytically
% There are two cases for a single inequality constraint
% Case (a) : beta = 0 g < 0
% Case (b) : beta ~= 0, g = 0
% The best solution is used
% --------------------------------------------------------

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%% management functions
clear  % clear all variable/information in the workspace - use CAUTION
clear global  %  again use caution - clears global information
clc    % position the cursor at the top of the screen
close   %  closes the figure window
format compact  % avoid skipping a line when writing to the command window
warning off  %#ok<WNOFF> % don't report any warnings like divide by zero etc.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%  DATA   ---------------------
%%% starting design
xb(1) = 3; xb(2) = 2;
it = 10; % number of iterations
%%% plot range for delx1  : -3 , +3
dx1L = -3;   dx1U = +3;
dx2L = -3;   dx2U = +3;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%% Define functions
syms x1 x2 f g h
syms gradf1 gradf2 gradh1 gradh2 gradg1 gradg2

f = x1^4 - 2*x1*x1*x2 + x1*x1 + x1*x2*x2 - 2*x1 + 4;
h = x1*x1 + x2*x2 - 2;
g = 0.25*x1*x1 +0.75*x2*x2 -1;

%%% the gradient functions
gradf1 = diff(f,x1);
gradf2 = diff(f,x2);
% the hessian
hess = [diff(gradf1,x1), diff(gradf1,x2); diff(gradf2,x1), diff(gradf2,x2)];

% gradient of the constraints
gradh1 = diff(h,x1);
gradh2 = diff(h,x2);
gradg1 = diff(g,x1);
gradg2 = diff(g,x2);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%% graphical/symbolic solution for SLP
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
fprintf('***********************')
fprintf('\nSQP - Example 7.1')
fprintf('\n*********************\n')
for i = 1:it
    %figure;
    f1 = subs(f,{x1,x2},{xb(1),xb(2)});
    g1 = subs(g,{x1,x2},{xb(1),xb(2)});
    h1 = subs(h,{x1,x2},{xb(1),xb(2)});

    %%%  Print Information
    fprintf('\n******************************')
    fprintf('\nIteration : '),disp(i)
    fprintf('******************************\n')
    fprintf('Linearized about [x1, x2]    : '),disp([xb(1) xb(2)])
    fprintf('Objective function value f(x1,x2)  : '),disp(f1);
    fprintf('Equality constraint value value h(x1,x2)  : '),disp(h1);
    fprintf('Inequality constraint value value g(x1,x2)  : '),disp(g1);
    %fprintf('\nsolution for  [delx1 delx2]   : '),disp(sol')
    % hold on
    % calculate the value of the gradients
    %     f1 = subs(f,{x1,x2},{xb(1),xb(2)});
    %     g1 = subs(g,{x1,x2},{xb(1),xb(2)});
    %     h1 = subs(h,{x1,x2},{xb(1),xb(2)});
    fprintf('\n-----------------------')
    fprintf('\nQP - SUB PROBLEM')
    fprintf('\n---------------------\n')

    gf1 =  double(subs(gradf1,{x1,x2},{xb(1),xb(2)}));
    gf2 =  double(subs(gradf2,{x1,x2},{xb(1),xb(2)}));
    hess1 = double(subs(hess,{x1,x2},{xb(1),xb(2)}));
    gh1 =  double(subs(gradh1,{x1,x2},{xb(1),xb(2)}));
    gh2 =  double(subs(gradh2,{x1,x2},{xb(1),xb(2)}));
    gg1 =  double(subs(gradg1,{x1,x2},{xb(1),xb(2)}));
    gg2 =  double(subs(gradg2,{x1,x2},{xb(1),xb(2)}));

    % the QP subproblem
    syms dx1 dx2   %  change in design
    fquad = f1 + [gf1 gf2]*[dx1; dx2] + 0.5*[dx1 dx2]*hess1*[dx1 ;dx2];
    hlin = h1 + [gh1 gh2]*[dx1; dx2];
    glin = g1 + [gg1 gg2]*[dx1; dx2];

    Fquadstr = strcat(num2str(f1),' + ',num2str(gf1), ...
        '*','dx1',' + ',num2str(gf2),' * ','dx2', ...
        ' + 0.5*',num2str(hess1(1,1)),' * dx1^2', ...
        ' +',num2str(hess1(1,2)),' * dx1*dx2', ...
        ' + 0.5*',num2str(hess1(2,2)),' * dx2^2');
    hlinstr = strcat(num2str(h1),' + ',num2str(gh1), ...
        '*','dx1',' + ',num2str(gh2),' * ','dx2');
    glinstr = strcat(num2str(g1),' + ',num2str(gg1), ...
        '*','dx1',' + ',num2str(gg2),' * ','dx2');

    fprintf('Quadratic Objective function  f(x1,x2): \n'),disp(Fquadstr);
    fprintf('Linearized equality    h(x1,x2): '),disp(hlinstr);
    fprintf('Linearized inequality  g(x1,x2): '),disp(glinstr);
    fprintf('\n')

    % define Lagrangian for the QP problem
    syms lamda beta
    F = fquad + lamda*hlin + beta*glin;

    fprintf('Case a: beta = 0\n');
    Fnobeta = fquad + lamda*hlin;



    %%% initialize best solution
    dx1best = 0;
    dx2best = 0;
    Fbbest = 0;

    %%%%%%%%%%%%%%%%%%%%%%%
    %%%  solve case (a) %%%
    %%%%%%%%%%%%%%%%%%%%%%%
    xcasea = solve(diff(Fnobeta,dx1),diff(Fnobeta,dx2),hlin);
    sola = [double(xcasea.dx1) double(xcasea.dx2) double(xcasea.lamda)];
    dx1a = double(xcasea.dx1);
    dx2a = double(xcasea.dx2);
    lamdaa = double(xcasea.lamda);
    hlina = double(subs(hlin,{dx1,dx2},{dx1a,dx2a}));
    glina = double(subs(glin,{dx1,dx2},{dx1a,dx2a}));
    Fa = double(subs(Fnobeta,{dx1,dx2,lamda},{dx1a,dx2a,lamdaa}));



    %%% results for case (a)
    x1a = dx1a + xb(1);
    x2a = dx2a + xb(2);
    fv = double(subs(f,{x1,x2},{x1a,x2a}));
    hv = double(subs(h,{x1,x2},{x1a,x2a}));
    gv = double(subs(g,{x1,x2},{x1a,x2a}));
    fprintf('Change in design vector: '),disp([dx1a dx2a]);
    fprintf('The linearized quality constraint: '),disp(hlina);
    fprintf('The linearized inequality constraint: '),disp(glina);

    fprintf('New design vector: '),disp([x1a x2a]);
    fprintf('The objective function: '),disp(fv);
    fprintf('The equality constraint: '),disp(hv);
    fprintf('The inequality constraint: '),disp(gv);

    if (glina <= 0)
        xb(1) = xb(1) + dx1a;
        xb(2) = xb(2) + dx2a;
        fbest = Fa;
        dx1best = dx1a;
        dx2best = dx2a;
    end


    %%%%%%%%%%%%%%%%%%%%%%%
    %%%  solve case (b) %%%
    %%%%%%%%%%%%%%%%%%%%%%%

    fprintf('\n Case b: g = 0\n');
    xcaseb = solve(diff(F,dx1),diff(F,dx2),hlin,glin);
    solb = [double(xcaseb.dx1) double(xcaseb.dx2) double(xcaseb.lamda) double(xcaseb.beta)];
    dx1b = double(xcaseb.dx1);
    dx2b = double(xcaseb.dx2);
    betab = double(xcaseb.beta);
    lamdab = double(xcaseb.lamda);
    hlinb = double(subs(hlin,{dx1,dx2},{dx1b,dx2b}));
    glinb = double(subs(glin,{dx1,dx2},{dx1b,dx2b}));
    Fb = double(subs(F,{dx1,dx2,lamda,beta},{dx1b,dx2b,lamdab,betab}));
    x1b = dx1b + xb(1);
    x2b = dx2b + xb(2);
    fv = double(subs(f,{x1,x2},{x1b,x2b}));
    hv = double(subs(h,{x1,x2},{x1b,x2b}));
    gv = double(subs(g,{x1,x2},{x1b,x2b}));
    fprintf('Change in design vector: '),disp([dx1b dx2b]);
    fprintf('The linearized quality constraint: '),disp(hlinb);
    fprintf('The linearized inequality constraint: '),disp(glinb);
    fprintf('New design vector: '),disp([x1b x2b]);
    fprintf('The objective function: '),disp(fv);
    fprintf('The equality constraint: '),disp(hv);
    fprintf('The inequality constraint: '),disp(gv);
    fprintf('Multiplier beta: '),disp(betab);
    fprintf('Multiplier lamda: '),disp(lamdab);

    if (betab > 0) &  (Fb <= fbest)
        xb(1) = x1b;
        xb(2) = x2b;
        dx1best = dx1b;
        dx2best = dx2b;
    end

    %%%  stopping criteria
    if ([dx1best dx2best]*[dx1best dx2best]') <= 1.0e-08
        fprintf('\n&&&&&&&&&&&&&&&&&&&&&&&&&&&&&')
        fprintf('\nStopped:  Design Not Changing')
        fprintf('\n&&&&&&&&&&&&&&&&&&&&&&&&&&&&&\n\n')
        break;
    elseif i == it
        fprintf('\n&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&')
        fprintf('\nStpped: Number of iterations at maximum')
        fprintf('\n&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&\n\n')
        break;
    end

end

1 个答案:

答案 0 :(得分:0)

  • f1, g1, h1仍然是syms变量类型。
  • 在应用之前使用功能numeric将它们更改为double()类型 函数num2str()
  • 您已经将double()应用于变量
gf1, gf2, gh1, gh2,gg1, gg2 and hess1 

在上方,无需触摸


这是您应替换的部分

    Fquadstr = strcat(num2str(f1),' + ',num2str(gf1), ...
        '*','dx1',' + ',num2str(gf2),' * ','dx2', ...
        ' + 0.5*',num2str(hess1(1,1)),' * dx1^2', ...
        ' +',num2str(hess1(1,2)),' * dx1*dx2', ...
        ' + 0.5*',num2str(hess1(2,2)),' * dx2^2');
    hlinstr = strcat(num2str(h1),' + ',num2str(gh1), ...
        '*','dx1',' + ',num2str(gh2),' * ','dx2');
    glinstr = strcat(num2str(g1),' + ',num2str(gg1), ...
        '*','dx1',' + ',num2str(gg2),' * ','dx2');

为此

        % apply double() to f1
        Fquadstr = strcat(num2str(double(f1)),' + ',num2str(gf1), ...

        '*','dx1',' + ',num2str(gf2),' * ','dx2', ...
        ' + 0.5*',num2str(hess1(1,1)),' * dx1^2', ...
        ' +',num2str(hess1(1,2)),' * dx1*dx2', ...
        ' + 0.5*',num2str(hess1(2,2)),' * dx2^2');

        % apply double() to h1
    hlinstr = strcat(num2str(double(h1)),' + ',num2str(gh1), ...
        '*','dx1',' + ',num2str(gh2),' * ','dx2');

    % apply double() to g1
    glinstr = strcat(num2str(double(g1)),' + ',num2str(gg1), ...
        '*','dx1',' + ',num2str(gg2),' * ','dx2');