尝试运行Logistic回归,但出现此错误could not convert string to float: 'DailyReturns'
,我检查了数据DailyReturns
是列名。
另外:apple['DailyReturns'].dtype
给出dtype('float64')
,而apple['_lortrain'].dtype
给出dtype('float64')
错误:
ValueError: could not convert string to float: 'DailyReturns'
代码:
_lortrain = np.sign(apple['DailyReturns'])
apple['_lortrain'] = _lortrain
_data_train, _data_test, = train_test_split(apple,test_size = 0.2)
X_train = _data_train.columns[4:9].values.reshape(-1,1)
y_train = _data_train['_lortrain'].values.reshape(-1,1)
#X_train = X_train.apply(pd.to_numeric, errors='coerce')
#y_train = y_train.apply(pd.to_numeric, errors='coerce')
X_test = _data_test.columns[4:9].values.reshape(-1,1)
y_test = _data_test['_lortrain'].values.reshape(-1,1)
_LogR = lor(C = 1e6, penalty='l2', tol=0.01, solver='saga')
_LogR.fit(X_train,y_train)
_logr = _LogR.predict(X_test)
数据:
apple.columns[4:9]
:
Index(['DailyReturns', 'Lag_Returns_1', 'Lag_Returns_2', 'Lag_Returns_3',
'Lag_Returns_4'],
dtype='object')
Close DailyReturns Lag_Returns_1 Lag_Returns_2 Lag_Returns_3 Lag_Returns_4 Lag_Returns_5
Date
1980-12-22 0.53 0.058269 0.040822 0.042560 0.021979 -0.085158 -0.040005
1980-12-23 0.55 0.037041 0.058269 0.040822 0.042560 0.021979 -0.085158
1980-12-24 0.58 0.053110 0.037041 0.058269 0.040822 0.042560 0.021979
1980-12-26 0.63 0.082692 0.053110 0.037041 0.058269 0.040822 0.042560
1980-12-29 0.64 0.015748 0.082692 0.053110 0.037041 0.058269 0.040822
答案 0 :(得分:0)
_data_train.columns[4:9].values
是列名称(是字符串)而不是列数据的列表。您应该使用_data_train.iloc[:,4:9].values
。或者,更好:
X_train = _data_train.iloc[:,4:9] # No values or reshape