python sklearn中的'ValueError:无法将字符串转换为浮点数'

时间:2019-09-21 13:02:09

标签: python pandas numpy scikit-learn random-forest

我有一个带有日期列的Pandas DataFrame。数据是从csv文件导入的。当我尝试拟合回归模型时,出现错误ValueError: could not convert string to float: '2019-08-30 07:51:21

我如何摆脱它?

这里是数据框。

source.csv

    event_id    tsm_id  rssi_ts        rssi batl    batl_ts    ts_diff
0   417736018   4317714 2019-09-05 20:00:07 140 100.0   2019-09-05 18:11:49 01:48:18
1   417735986   4317714 2019-09-05 20:00:07 132 100.0   2019-09-05 18:11:49 01:48:18
2   418039386   4317714 2019-09-06 01:00:08 142 100.0   2019-09-06 00:11:50 00:48:18
3   418039385   4317714 2019-09-06 01:00:08 122 100.0   2019-09-06 00:11:50 00:48:18
4   420388010   4317714 2019-09-07 15:31:07 143 100.0   2019-09-07 12:11:50 03:19:17

这是我的代码:

model = pd.read_csv("source.csv")
model.describe()

        event_id        tsm_id.         rssi        batl
count   5.000000e+03    5.000000e+03    5000.000000 3784.000000
mean    3.982413e+08    4.313492e+06    168.417200  94.364429
std 2.200899e+07    2.143570e+03    35.319516   13.609917
min 3.443084e+08    4.310312e+06    0.000000    16.000000
25% 3.852882e+08    4.310315e+06    144.000000  97.000000
50% 4.007999e+08    4.314806e+06    170.000000  100.000000
75% 4.171803e+08    4.314815e+06    195.000000  100.000000
max 4.258451e+08    4.317714e+06    242.000000  100.000000

labels_b = np.array(model['batl'])
features_r= model.drop('batl', axis = 1)
features_r = np.array(features_r)

from sklearn.model_selection import train_test_split
train_features, test_features, train_labels, test_labels = train_test_split(features_r,          
labels_b, test_size = 0.25, random_state = 42)

from sklearn.ensemble import RandomForestRegressor
rf = RandomForestRegressor(n_estimators = 1000, random_state = 42)
rf.fit(train_features, train_labels);

这是错误消息:

ValueError                                Traceback (most recent call last)
<ipython-input-28-bc774a9d8239> in <module>
      4 rf = RandomForestRegressor(n_estimators = 1000, random_state = 42)
      5 # Train the model on training data
----> 6 rf.fit(train_features, train_labels);

~/ml/env/lib/python3.7/site-packages/sklearn/ensemble/forest.py in fit(self, X, y, sample_weight)
    247 
    248         # Validate or convert input data
--> 249         X = check_array(X, accept_sparse="csc", dtype=DTYPE)
    250         y = check_array(y, accept_sparse='csc', ensure_2d=False, dtype=None)
    251         if sample_weight is not None:

~/ml/env/lib/python3.7/site-packages/sklearn/utils/validation.py in check_array(array, accept_sparse, accept_large_sparse, dtype, order, copy, force_all_finite, ensure_2d, allow_nd, ensure_min_samples, ensure_min_features, warn_on_dtype, estimator)
    494             try:
    495                 warnings.simplefilter('error', ComplexWarning)
--> 496                 array = np.asarray(array, dtype=dtype, order=order)
    497             except ComplexWarning:
    498                 raise ValueError("Complex data not supported\n"

~/ml/env/lib/python3.7/site-packages/numpy/core/numeric.py in asarray(a, dtype, order)
    536 
    537     """
--> 538     return array(a, dtype, copy=False, order=order)
    539 
    540 

ValueError: could not convert string to float: '2019-08-30 07:51:21'

3 个答案:

答案 0 :(得分:1)

您必须将时间日期从字符串转换为熊猫时间戳。可以使用以下行完成此操作(在您编写时,其他所有内容均会保留):

model = (
    pd.read_csv("source.csv", parse_dates=['rssi_ts', 'batl_ts'], date_parser=lambda x: pd.to_datetime(x))
    .assign(
        rssi_ts=lambda x: x.loc[:, 'rssi_ts'].astype(int) / 10 ** 9,
        batl_ts=lambda x: x.loc[:, 'batl_ts'].astype(int) / 10 ** 9,
        ts_diff=lambda x: pd.to_timedelta(x.loc[:, 'ts_diff']).astype(int) / 10 ** 9
    )
)
parse_dates参数创建的

Timestamp对象可以转换为float。

编辑:缺少括号。

Edit2 :用于其他时间戳记和变化时间。

答案 1 :(得分:0)

阅读模型后尝试尝试类似的事情

import datetime
to_timestamp_fct = lambda x: datetime.datetime.strptime(x, '%Y-%m-%d %H:%M:%S').timestamp()

model['rssi_ts'] = model['rssi_ts'].apply(to_timestamp_fct)

答案 2 :(得分:0)

它正在以字符串形式读取您的值...要使模型正常工作,必须将其读取为整数或浮点数,因此请使用此功能:

model = (
    pd.read_csv("source.csv", parse_dates=['rssi_ts', 'batl_ts'], date_parser=lambda x: pd.to_datetime(x))
    .assign(rssi_ts=lambda x: x.loc[:, 'rssi_ts'].astype(int) / 10 ** 9)