我需要找到95%的置信区间为2.5和97.5个分位数
boot_mean_diff = []
for i in range(3000):
boot_before = before_proportion
boot_after = after_proportion
boot_mean_diff.append(boot_after.mean()-boot_before.mean())
# Calculating a 95% confidence interval from boot_mean_diff
boot_mean_diff=pd.Series(boot_mean_diff)
#boot_mean_diff1=boot.boot_mean_diff(frac=1,replace=True)
confidence_interval = pd.Series(boot_mean_diff).quantile([0.025,0.975])
confidence_interval
但是,我在下面得到了错误----
AssertionError:置信区间应计算为boot_mean_diff的[0.025,0.975]分位数。
答案 0 :(得分:0)
我也面临着同样的错误。试试下面的代码
didParseCell: data => {
if (data.cell && $(data.cell.raw).data('subhead') == true) {
console.log('Subheader Found;')
data.cell.styles.halign = 'center';
}
}
我将import numpy用作np,因此使用了np.mean() 您可以直接尝试使用boot_after.mean()